

FEMS Microbiology Letters 249 (2005) 177-183

www.fems-microbiology.org

Sorbitol synthesis by an engineered *Lactobacillus casei* strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon

Lorenzo Nissen a,b, Gaspar Pérez-Martínez a, María J. Yebra a,*

^a Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), 46100 Burjassot, Valencia, Spain
^b Department of Agroenvironmental Sciences and Technologies, Microbiology area, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy

Received 15 April 2005; received in revised form 2 June 2005; accepted 7 June 2005

First published online 24 June 2005

Edited by E. Ricca

Abstract

Sorbitol is claimed to have important health-promoting effects and *Lactobacillus casei* is a lactic acid bacterium relevant as probiotic and used as a cheese starter culture. A sorbitol-producing *L. casei* strain might therefore be of considerable interest in the food industry. A recombinant strain of *L. casei* was constructed by the integration of a D-sorbitol-6-phosphate dehydrogenase-encoding gene (*gutF*) in the chromosomal lactose operon (strain BL232). *gutF* expression in this strain followed the same regulation as that of the *lac* genes, that is, it was repressed by glucose and induced by lactose. ¹³C-nuclear magnetic resonance analysis of supernatants of BL232 resting cells demonstrated that, when pre-grown on lactose, cells were able to synthesize sorbitol from glucose. Inactivation of the L-lactate dehydrogenase gene in BL232 led to an increase in sorbitol production, suggesting that the engineered route provides an alternative pathway for NAD⁺ regeneration.

© 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Lactobacillus casei; Sorbitol; Metabolic engineering

1. Introduction

Lactic acid bacteria (LAB) are fermentative microorganisms that use two main sugar catabolic pathways. The Embden–Meyerhof–Parnas pathway results in almost exclusively lactic acid as end-product (homolactic fermentation). The NAD⁺ consumed during glycolysis is regenerated during pyruvate reduction by the L-lactate dehydrogenase (Ldh), thus maintaining the cellular redox balance. The 6-phosphogluconate/phosphoketo-lase pathway results in significant amounts of other end-products such as ethanol, acetate, and carbon diox-

ide in addition to lactic acid (heterolactic fermentation). Under certain conditions, LAB can also use alternative electron acceptors to regenerate NAD⁺ through suitable dehydrogenases. For instance, some heterofermentative LAB can reduce directly fructose to mannitol, by means of a mannitol dehydrogenase [1]. In homofermentative LAB, similar reactions can take place and fructose-6-phosphate can be reduced to mannitol-1-phosphate and sorbitol-6-phosphate (Fig. 1), which are catalized by mannitol-1-phosphate dehydrogenase and sorbitol-6-phosphate dehydrogenase and sorbitol-6-phosphate dehydrogenase (S6PDH), respectively. However, their genes are clustered with those of the corresponding hexitol transporter of the phosphoenol-pyruvate-dependent phosphotransferase system (PTS) family, indicating that their regular physiological role

^{*} Corresponding author. Tel.: +34 96 390 0022; fax: +34 96 363 6301. *E-mail address:* yebra@iata.csic.es (M.J. Yebra).

Fig. 1. Pathways proposed for glucose metabolism in *Lactobacillus casei* BL23 (wild-type) and in the engineered strains obtained in this work. 1, glucose permease; 2, glucose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS^{Man}); 3, glucose kinase; 4, phophoglucose isomerase; 5, sorbitol-6-phosphate dehydrogenase; 6, mannitol-1-phosphate dehydrogenase; 7, 6-phosphofructokinase; 8, lactate dehydrogenase; 9, pyruvate formate lyase; 10, acetaldehyde dehydrogenase; 11, alcohol dehydrogenase; 12, phosphotransacetylase; 13, acetate kinase; 14, pyruvate oxidase; 15, α -acetolactate synthase; 16, α -acetolactate decarboxylase; 17, 2,3-butanediol dehydrogenase.

should be mediating hexitol assimilation [2,3]. This could be confirmed by the fact that hexitol accumulation has only been demonstrated in mutants lacking Ldh, where NAD⁺ regeneration was seriously compromised [4–7]

Lactobacillus casei is a facultative heterofermentative LAB associated with dairy products and some strains have health-promoting properties [8-12]. In L. casei, two S6PDH-encoding genes have been found [3,13]. However, sorbitol production is not likely in this bacterium during its growth on glucose or lactose, since both S6PDH genes are subject to catabolite repression and substrate induction [3,13]. The aim of this work has been the construction of sorbitol-producing L. casei strains. The gutF gene, encoding a S6PDH, was introduced in the lactose operon of L. casei and expression of the S6PDH was subject to the same regulation as lactose genes [14–16]. Production of sorbitol and other metabolites in this recombinant strain and in an L-Ldh deficient variant were determined by ¹³C-nuclear magnetic resonance (NMR) analysis.

2. Materials and methods

2.1. Bacterial strains, plasmids, primers and growth conditions

The strains, plasmids and primers used in this work are listed in Table 1. *L. casei* strains were grown in MRS medium (Oxoid LTD., Hampshire, England) or MRS fermentation medium (Scharlau Chemie S.A., Barcelona, Spain) supplemented with 0.5% (w/v) of different carbohydrates at 37 °C under static conditions. *Escherichia coli* DH5α was used in all cloning experiments and was grown in Luria–Bertani (LB) medium at 37 °C under agitation. When required, erythromycin

Table 1					
Strains, plasmids and	oligonucleotides	used	in	this	study

Strain, plasmid or oligonucleotide	Description	Source or reference	
Lactobacillus casei			
BL23	CECT ^a 5275 (wild type)	B. Chassy (University of Illinois, Urbana)	
BL155	BL23 with a frameshift in <i>lacF</i>	[16]	
BL232	BL155 with <i>gutF</i> integrated in <i>lac</i> operon	This work	
BL233	BL232 with ldhL::pRV300	This work	
BL234	BL232 with <i>gutF</i> ::pRV300 in gut operon This work		
Plasmids			
pRV300	Suicide vector carrying Er ^r from pAMβ1	[29]	
PVBldh	pRV300 containing an internal ldhL fragment	[24]	
pRVgut3	pRV300 containing an internal <i>gutF</i> fragment	[3]	
pIlac	lacG 3' end and lacF gene in pRV300	[21]	
PIlgutF	pIlac containing gutF	This work	
Oligonucleotides			
gutNdeI	5' AGAGATTGCATATGTCTGATTGG	Isogen Bioscience	
gutEcoRI	5' CCAAGCTGAATTCTTAACCTCTGGAC	Isogen Bioscience	

^a CECT, Colección Española de Cultivos Tipo.

Download English Version:

https://daneshyari.com/en/article/9121572

Download Persian Version:

https://daneshyari.com/article/9121572

<u>Daneshyari.com</u>