

FEMS Microbiology Letters 248 (2005) 119-124

www.fems-microbiology.org

recA gene expression in a streptomycete is mediated by the unusual C-terminus of RecA protein

Ivan Ahel *, Andreja Mikoc, Vera Gamulin

Department of Molecular Biology, Rudjer Boskovic Institute, pp180, 10002 Zagreb, Croatia

Received 8 February 2005; received in revised form 18 April 2005; accepted 17 May 2005

First published online 31 May 2005

Edited by J.A. Gil

Abstract

Streptomyces RecA proteins are characterized by a conserved, positively charged extension of unknown function appended at their C-termini. To investigate the function of this element, we introduced the *Streptomyces rimosus recA* gene and its mutant form encoding the protein with a C-terminal deletion into *S. rimosus*. Both transcript and protein levels were dramatically increased in the strain expressing the truncated gene compared to the strain bearing the wild-type *recA*, indicating involvement of the characteristic C-terminal extension in regulating the *recA* expression in *Streptomyces*. Considering that RecA acts as a major regulator of DNA damage response in bacteria, this mode of regulation is expected to have broader implications and significance that outreaches our current understanding of RecA autoregulation.

© 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: RecA; Streptomyces; C-terminus; Transcription; DNA damage response; Promoter

1. Introduction

RecA is a multifunctional protein that plays a central role in the process of homologous recombination, recombinational DNA repair and regulation of the DNA damage response [1]. It is amongst the most conserved bacterial proteins with an overall similarity between 43% and 100% [2], and is universally distributed within the bacterial kingdom, with the exception of a few obligate endosymbionts [3]. The most conserved part of RecA is its central domain that binds ATP and DNA, while its N- and C-terminal regions, involved in monomer interaction [4], display species-specific variety.

The role of RecA protein in regulating DNA damage response has been well established for the *Escherchia coli*

system: it acts as an indirect regulator of a number of genes, including the *recA* itself, that are normally repressed by the LexA protein. The RecA nucleates onto single-stranded DNA produced as a result of DNA damage, forming an activated RecA filament. The filament in turn interacts with the LexA protein and stimulates its autocatalytic cleavage, thereby inducing the genes of the SOS-regulon [5]. In particular, binding of the RecA to both DNA and protein regulators is mediated by the negatively charged C-terminus of the RecA protein [6,7]. Consequently, this structural element is an important determinant of cellular RecA quantity control: it was demonstrated that removal of 25 residues from C-terminus increased levels of the RecA production and led to constitutive SOS induction [6].

Whereas *E. coli* and majority of bacterial RecA proteins possess shorter and acidic C-termini, a characteristic ~ 20 amino acid extension rich in alanines and lysines

^{*} Corresponding author. Tel.: +385 1 4561 115; fax: +385 1 4561 177. *E-mail address:* iahel@irb.hr (I. Ahel).

^{0378-1097/\$22.00 © 2005} Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.femsle.2005.05.030

is present at the C-termini of Streptomyces RecAs [8,9] (Fig. 1A). The function and structure of this appendix are unknown, but deletion of this region in the *Streptomyces lividans* RecA has been shown not to affect major RecA functions (judged by the ability of truncated protein to restore UV-resistance and homologous recombination in a RecA-deficient strain) [10]; the same was confirmed for the C-terminal deletion in the *Streptomyces rimosus* RecA [11]. Moreover, our understanding of DNA damage response in *Streptomyces* is obscure: although the upstream regions of the streptomycete *recA* reveal the presence of a putative *recA* promoter overlapped by an imperfect LexA-binding site [12], transcriptional analysis of the *S. rimosus recA* showed that this putative promoter has only a very weak activity and is not significantly induced upon DNA damage [13] (Fig. 2). Instead, the major, DNA damage inducible *recA* promoter was identified 94 bp downstream (Fig. 2) as a novel type of promoter [13]. It has been experimentally demonstrated for the homologous *Mycobacterium*

Α		
Streptomyces lividans Streptomyces coelicolor Streptomyces venezuelae Streptomyces scabies Streptomyces rimosus Streptomyces avermitilis Streptomyces ambofaciens Bifidobacterium longum Mycobacterium tuberculosis Amycolatopsis mediterranei Propionibacterium acnes Bacillus subtilis Escherichia coli	LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKQKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKQKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLADEIERKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVENGFVRKAGAWYTYEGDQLGQCKENARNFLKDNPDLANEIEKKIKEKLG- LIDMGVDQGLIRKSGAWFTYEGEQLGQCKENARNFLVENADVADEIEKKIKEKLG- LIDMGVDQGLIRKSGAWFTYEGEQLGQCKENARNFLVENADVADEIEKKIKEKLG- LIDMGVDQGIIRKSGAWYTYEGDQLGQCKENARKFLRDNPDIANEIEKKIKEKLG- LIDMGVDQGIITKSGSWFSYNNEQLGQCKENVRKFLRGNPDVANEIEDKILTHLGL IIDLGTELDIVQKSGSWYSYEEERLGQGRENAKOFLKENKDIMLMIQEQIREHYGL LVDLGVKEKLIEKAGAWYSYKGEKIGQCKANATAWLKDNPETAKEIEKKVRELLS	328 328 328 328 328 328 328 328 328 329 329 329 320 326 330
Streptomyces lividans Streptomyces coelicolor Streptomyces venezuelae Streptomyces scabies Streptomyces rimosus Streptomyces avermitilis Streptomyces ambofaciens Bifidobacterium longum Mycobacterium tuberculosis Amycolatopsis mediterranei Propionibacterium acnes Bacillus subtilis Escherichia coli	VGVHPEESAT-EPGA-DAASAAPADAAPAVPAPTTAKATKSKAAAAKS VGVHPEESAT-EPGA-DAASAAPADAAPAVPAPTTAKATKSKATAAKS VGVRPDAAKA-EA-ATDAAAADTAGTDDAAKSVPA-PASKTAKATKATAVKS VGVRPEPTG-QPGA-DAAV-SATPADDTAKAAPA-SAAKTAK-TKAAAAKS VGVRPEDLTA-EPGA-DAAGAA-ADAEAP-AKSVPA-PAAKSAKGSKAAAAKS VGVRPEEPTA-EPGA-DAAGAA-ADAEAP-AKSVPA-PAAKSKSKAAAAKS VGVRPEEPTA-EPGA-DAAGAA-ADAEAP-AKSVPA-PAAKSKSKAAAAKS VGVRPEEPTA-EPGA-DAAGAA	374 374 375 376 377 350 348 348 348 347 353

Fig. 1. (A) Multiple sequence alignment of the C-terminal regions of RecA proteins. GenBank accession numbers are as follows: *S. lividans* (P48294), *S. coelicolor* (O50487), *S. venezuelae* (U04837), *S. scabies* (http://www.sanger.ac.uk/Projects/S_scabies), *S. rimosus* (P95846), *S. avermitilis* (Q82KB1), *S. ambofaciens* (P41054), *B. longum* (AAN25214), *M. tuberculosis* (P35901), *A. mediterranei* (Q9REV6), *P. acnes* (AAT69987), *B. subtilis* (P16971) and *E. coli* (P03017). (B) Phylogenetic tree of selected bacterial RecA proteins. Bootstrap values are given for each branch. The tree has been rooted using archaeal RadA sequences.

Download English Version:

https://daneshyari.com/en/article/9121766

Download Persian Version:

https://daneshyari.com/article/9121766

Daneshyari.com