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Abstract

While Bayesian analysis has become common in phylogenetics, the effects of topological prior probabilities on tree inference have
not been investigated. In Bayesian analyses, the prior probability of topologies is almost always considered equal for all possible
trees, and clade support is calculated from the majority rule consensus of the approximated posterior distribution of topologies.
These uniform priors on tree topologies imply non-uniform prior probabilities of clades, which are dependent on the number of
taxa in a clade as well as the number of taxa in the analysis. As such, uniform topological priors do not model ignorance with respect
to clades. Here, we demonstrate that Bayesian clade support, bootstrap support, and jackknife support from 17 empirical studies are
significantly and positively correlated with non-uniform clade priors resulting from uniform topological priors. Further, we demon-
strate that this effect disappears for bootstrap and jackknife when data sets are free from character conflict, but remains pronounced
for Bayesian clade supports, regardless of tree shape. Finally, we propose the use of a Bayes factor to account for the fact that uni-
form topological priors do not model ignorance with respect to clade probability.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past few years, a method of complex prob-
lem-solving known as Markov Chain Monte Carlo
(MCMC) has been gaining popularity among phyloge-
neticists (see reviews in Holder and Lewis, 2003; Huel-
senbeck et al., 2002; Lewis, 2001). MCMC itself is not
new, dating from Metropolis et al. (1953), and its Bayes-
ian character—its ability to sample a posterior distribu-
tion—is well established (Tierney, 1994). But the
implementation of the MCMC algorithm as an applica-

tion in phylogenetics is fairly new, originating with the
doctoral dissertation work of Li (1996) and Mau
(1996). Others have discussed Bayesian interpretations
of phylogenetic problems (Farris, 1973; Harper, 1979;
Wheeler, 1991), but these did not involve MCMC, and
so we do not treat those interpretations here.

Considering only explicitly statistical methods of
phylogenetics, a Bayesian approach is, in some ways,
more appealing than the likelihood approach. As is
well known, the likelihood of a hypothesis (here, the
tree) given the data is proportional to the probability
of the data given the hypothesis (see Edwards, 1992,
p. 9). Phylogeneticists—whose primary investigation
usually relates to tree selection—are more concerned
with the probability of the tree, conditional on the
model and the data (rather than the probability of
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the data), and this is what Bayes� formula provides.
But to accomplish this inversion (see Farris, 1973),
information regarding the prior probabilities of the
trees is needed. Many advocates of Bayesian phyloge-
netics have commented on the importance of this prior
assessment of tree probabilities (Huelsenbeck et al.,
2001, 2002; Lewis, 2001) and have mentioned that
prior selection can be problematic (Holder and Lewis,
2003; Lewis, 2001).

Because of these issues, some questions remain
open. What constitutes a reasonable topological
prior probability, and how does one arrive at such
a distribution? The estimation of prior probabilities
is difficult when little is known about the phylogeny
of a group of organisms beforehand, which is most
often, or arguably always, the case for systematic
studies.

Proponents of the new Bayesian approach to phylog-
eny have advocated the use of uniform topological
priors to reflect ignorance (see review in Huelsenbeck
et al., 2002; Lewis, 2001). When nothing is known
regarding the relationships of taxa prior to analysis, all
tree hypotheses are considered to be equally probable.
This may be valid given the ‘‘principle of insufficient rea-
son’’ (LaPlace 1820, as cited in Kass and Wasserman,
1996). For example, Farris (1973, p. 251) argued that,
in a Bayesian framework, ‘‘. . . P{E}, the probability of
evolutionary hypothesis [tree] E not conditional upon
any data, may be treated as if equal for all E.’’ While
it may seem paradoxical on the one hand to claim the
superiority of a method due to its ability to incorporate
prior knowledge, and, on the other, to claim that igno-
rance should be modeled, this concern is not unique to
Bayesian phylogenetics, and forms the kernel of the
schism between the ‘‘empirical’’ and ‘‘subjective’’
schools of Bayesian statistics. This debate is beyond
the scope of the present study.

Other than modeling ignorance, justifications for the
use of uniform topological priors are that the likelihood
function will overwhelm any information in the topolog-
ical priors anyway (see review in Lewis, 2001), and that
the topological prior information is unimportant to the
Metropolis-Hastings algorithm (Hastings, 1970;
Metropolis et al., 1953) because it is identical in both
the numerator and denominator, when all topologies
are considered equally probable a priori. The conditions
under which the former will be true in phylogenetic anal-
yses have not been established. The latter, however, is
necessarily true when tree topology is the hypothesis
being evaluated. Because of this property of the Metrop-
olis-Hastings algorithm, and because every tree is given
an equal probability a priori, uniform priors are said to
model ignorance effectively. However, it has long been
established that no prior can be devised that models
ignorance for all hypotheses simultaneously (Franklin,
2001; Kass and Wasserman, 1996; Walley, 1996). This

applies to phylogenetics, when the hypothesis being
evaluated is not the entire topology, but the presence
of individual clades.

We will show that when uniform topological priors
are stipulated, clade probabilities are not equal a priori.
Specifically, the number of taxa in a clade, given the
number of taxa in the entire analysis, affects the prior
probability of that clade in a predictable way. Because
of this, if the hypothesis being investigated is monophyly
(i.e., the probability of the clade), uniform topological
priors do not model ignorance, an undesirable property
of a prior distribution when little is known a priori.
While we do not argue that clade priors must be uni-
form, the clade priors that result from uniform topolog-
ical priors are difficult to justify as reasonable in any
case. Under these conditions, the claim that uniform
topological priors do not influence results in a Bayesian
framework is false.

2. Uniform topological priors and clade priors

Considering a pool of fully bifurcating, equiprobable,
rooted trees for n taxa, the probability of a given clade
of T taxa is equivalent to the probability of randomly
choosing a tree containing that clade, or, considered an-
other way, the sum of the (equal) probabilities of all
trees containing that clade. Here, the probability of a
clade is obtained by multiplying the number of rear-
rangements of that clade by the number of rearrange-
ments of all taxa not in that clade, divided by the
number of possible rooted trees for n taxa (see Eq. 1).
This means that if all trees are considered equally prob-
able, the probability of a clade is dependent on the num-
ber of taxa it contains, T, and the number of total taxa
in the analysis, n.

Because a monophyletic group of T taxa is rooted,
the number of rearrangements is the same as the number
of rooted trees for T taxa (Felsenstein, 1978; see review
in Swofford et al., 1996). This value is multiplied by the
number of possible n � T rearrangements (that do not
compromise the monophyly of T). The denominator is
simply the number of possible labeled trees for n taxa
(as in Felsenstein, 1978). Therefore,
QT

i¼22i� 3
� � Qn

i¼Tþ12i� 2T � 1
� �

Qn
i¼22i� 3

: ð1Þ

Eq. (1) calculates the probability of monophyly for T

taxa, given that all possible rooted topologies are
equally probable (see Formula 12 of Brown (1994) for
a similar, independently derived formula. However,
Brown�s formula results in somewhat different values
than those obtained here [see reported values therein]).

To demonstrate this more intuitively, consider a set
of n = 5 taxa, A–E, for which there are 105 bifurcating,
rooted trees. Considering the monophyly of T = 3 taxa,
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