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a  b  s  t  r  a  c  t

We  present  an  algorithmic  model  for the  development  of  chil-
dren’s intuitive  theories  within  a hierarchical  Bayesian  framework,
where  theories  are  described  as sets  of  logical  laws  generated  by
a  probabilistic  context-free  grammar.  We  contrast  our  approach
with  connectionist  and  other  emergentist  approaches  to modeling
cognitive  development.  While  their  subsymbolic  representations
provide  a  smooth  error  surface  that supports  efficient  gradient-
based learning,  our  symbolic  representations  are  better  suited  to
capturing  children’s  intuitive  theories  but  give  rise to a harder
learning  problem,  which  can only  be  solved  by  exploratory  search.
Our  algorithm  attempts  to discover  the theory  that best  explains
a  set  of  observed  data  by  performing  stochastic  search  at two  lev-
els  of  abstraction:  an outer  loop  in  the  space  of  theories  and  an
inner  loop  in  the  space  of  explanations  or  models  generated  by
each  theory  given  a particular  dataset.  We  show  that  this  stochastic
search  is  capable  of  learning  appropriate  theories  in several  every-
day  domains  and  discuss  its dynamics  in  the  context  of  empirical
studies  of  children’s  learning.
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If a person should say to you “I have toiled and not found”, don’t believe. If they say “I have not toiled
but found”, don’t believe. If they say “I have toiled and found”, believe. - Rabbi Itz’hak, Talmud

For the Rabbis of old, learning was toil, exhausting work – a lesson many scientists appreciate. Over
recent decades, scientists have toiled hard trying to understand learning itself: what children know
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when, and how they come to know it. How do children go from sparse fragments of observed data to
rich knowledge of the world? From one instance of a rabbit to all rabbits, from occasional stories and
explanations about a few animals to an understanding of basic biology, from shiny objects that stick
together to a grasp of magnetism – children seem to go far beyond the specific facts of experience to
structured interpretations of the world.

What some scientists found in their toil is themselves. It has been argued that children’s learning
is much like a kind of science, both in terms of the knowledge children create, its form, content, and
function, and the means by which they create it. Children organize their knowledge into intuitive
theories – abstract coherent frameworks that guide inference and learning within particular domains
(Carey, 1985, 2009; Gopnik & Meltzoff, 1997; Murphy & Medin, 1985; Wellman & Gelman, 1992). Such
theories allow children to generalize from given evidence to new examples, make predictions and plan
effective interventions on the world. Children even construct and revise these intuitive theories using
many of the same practices that scientists do (Schulz, 2012b):  searching for theories that best explain
the data observed, trying to make sense of anomalies, exploring further and even designing new
experiments that could produce informative data to resolve theoretical uncertainty, and then revising
their hypotheses in light of the new data.

Consider the following concrete example of theory acquisition, which we return to frequently. A
child is given a bag of shiny, elongated, hard objects to play with and finds that some pairs seem to
exert mysterious forces on each other, pulling or pushing apart when they are brought near enough.
These are magnets, but she doesn’t know what that would mean. This is her first exposure to the
domain. To make matters more interesting, and more like the situation of early scientists exploring
the phenomena of magnetism in nature, suppose that all of the objects have an identical metallic
appearance, but only some of them are magnetic, and only a subset of those are actually magnets
(permanently magnetized). She may  initially be confused trying to figure out what interacts with
what, but like a scientist developing a first theory, after enough exploration and experimentation, she
might start to sort the objects into groups based on similar behaviors or similar functional proper-
ties. She might initially distinguish two groups, the magnetic objects (which can interact with each
other) and the nonmagnetic ones (which do not interact). Perhaps then she will move on to subtler
distinctions, noticing that this very simple theory doesn’t predict everything she observes. She could
distinguish three groups, separating the permanent magnets from the rest of the magnetic objects
as well as from the nonmagnetic objects and recognizing that there will only be an interaction if
at least one of the two magnetic objects brought together is a permanent magnet. With more time
to think and more careful observation, she might even come to discover the existence of magnetic
poles and the laws by which they attract or repel when two  magnets are brought into contact. These
are but three of a large number of potential theories, varying in complexity and power, that a child
could entertain to explain her observations and make predictions about unseen interactions in this
domain.

Our goal here is to explore computational models of how children might acquire and revise an
intuitive theory such as this on the basis of domain experience. Any model of learning must address
two kinds of questions: what and how? Which representations can capture the form and content of
what the learner comes to know, and which principles or mechanisms can explain how the learner
comes to know it, moving from one state of knowledge to another in response to observed data? Here
we address the ‘how’ question. We  build on much recent work addressing the ‘what’ question, which
proposes to represent the content of children’s intuitive theories as probabilistic generative mod-
els defined over hierarchies of structured symbolic representations (Kemp, Goodman, & Tenenbaum,
2008b; Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). Pre-
viously the ‘how’ question has been addressed only at a very high level of abstraction, if at all: The
principles of Bayesian inference explain how an ideal learner can successfully identify an appropriate
theory, based on maximizing the posterior probability of a theory given data (as given by Bayes’ rule).
But Bayes’ rule says nothing about the processes by which a learner could construct such a theory or
revise it in light of evidence. Here our goal is to address the ‘how’ of theory construction and revision at
a more mechanistic, process level, exploring cognitively realistic learning algorithms. Put in terms of
Marr’s (1982) three levels of analysis, previous Bayesian accounts of theory acquisition have concen-
trated on the level of computational theory, while here we move to the algorithmic level of analysis,
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