
Spatiotemporal Bayesian inference dipole analysis for MEG

neuroimaging data

Sung C. Jun,* John S. George, Juliana Paré-Blagoev, Sergey M. Plis, Doug M. Ranken,
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Recently, we described a Bayesian inference approach to the MEG/

EEG inverse problem that used numerical techniques to estimate the

full posterior probability distributions of likely solutions upon which all

inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999.

Bayesian inference applied to the electromagnetic inverse problem.

Human Brain Mapping 7, 195; Schmidt, D.M., George, J.S., Ranken,

D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for

MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.),

Biomag 2000: 12th International Conference on Biomagnetism. Espoo,

Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at

a single point in time employing an extended region source model. They

subsequently extended their work to a spatiotemporal Bayesian

inference analysis of the full spatiotemporal MEG/EEG data set. Here,

we formulate spatiotemporal Bayesian inference analysis using a multi-

dipole model of neural activity. This approach is faster than the

extended region model, does not require use of the subject’s anatomical

information, does not require prior determination of the number of

dipoles, and yields quantitative probabilistic inferences. In addition, we

have incorporated the ability to handle much more complex and

realistic estimates of the background noise, whichmay be represented as

a sum of Kronecker products of temporal and spatial noise covariance

components. This reduces the effects of undermodeling noise. In order

to reduce the rigidity of the multi-dipole formulation which commonly

causes problems due to multiple local minima, we treat the given

covariance of the background as uncertain and marginalize over it in

the analysis. Markov Chain Monte Carlo (MCMC) was used to sample

the many possible likely solutions. The spatiotemporal Bayesian dipole

analysis is demonstrated using simulated and empirical whole-head

MEG data.
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Introduction

Magnetoencephalography (MEG) and electroencephalography

(EEG) are non-invasive techniques. These methods measure direct

physical consequences of neuronal currents and are capable of

resolving temporal patterns of neural activity in the millisecond

range. The MEG/EEG source localization problem, which identi-

fies active brain regions from measurements on or outside of the

human head, has been important in medical diagnosis of conditions

like epilepsy, in surgical planning, and in neuroscience research.

However, the MEG/EEG source localization inverse problem is

mathematically ill-posed, that is, it has no unique solution.

For several decades, researchers have worked to develop

MEG/EEG source localization methods to try to overcome the

inherent ill-posed nature of the inverse problem. A number of

localization methods which assume a dipolar source or an

extended source have been developed (see Hämäläinen et al.

(1993) for review). Most existing approaches fall into two broad

categories: (1) few-parameter models having Np << Ns and (2)

many-parameter models having Np >> Ns, where Np is the

number of parameters to be estimated in the model and Ns is

the number of measurements, typically the number of sensors in

MEG/EEG system. In general, few-parameter models are solved

by finding a best-fitting solution through various nonlinear

optimization techniques (Hämäläinen et al., 1993; Mosher et al.,

1992; Huang et al., 1998; Uutela et al., 1998a; Jun et al.,

2002). Many-parameter models are usually solved by the

minimum norm method, or variants of the same, that selects

the one solution minimizing a specified norm from the many

solutions that fit the data equally well (Hämäläinen and

Ilmoniemi, 1994; Gorodnitsky et al., 1995; Robinson and Vrba,

1999; Pascual-Marqui et al., 1994).

Recently, new probabilistic approaches to the MEG/EEG

source localization problem based on Bayesian inference using

Markov Chain Monte Carlo (MCMC) have been reported by

Schmidt et al. (1999), Bertrand et al. (2001a,b), and Kincses et al.

(2003). Unlike other probabilistic approaches (Baillet and

Garnero, 1997; Phillips et al., 1997), the Bayesian inference
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approach does not result in a single best solution to the problem

but produces a large number of likely solutions that fit both the

data and any prior information. From the many sampled likely

solutions, we can characterize some statistical information on any

feature of solutions. This provides an effective means for

quantifying uncertainty that is distinct from the other approaches

to quantify uncertainty in inverse algorithms (Medvick et al.,

1989; Singh and Harding, 2000; Darvas et al., 2005). Schmidt

and Bertrand focused on the analysis of data at a single point in

time and demonstrated the utility of Bayesian inference both for

including pertinent prior information (anatomical location and

orientation, sparseness of regions of activity, limitations on

current strength, and spatial correlation) and for yielding robust

results in spite of the under-determined inverse problem. Schmidt

et al. (1999) used an extended region model for neural activity

and Reversible Jump (RJ) MCMC method, while Bertrand et al.

(2001a,b) used a multi-dipole model and combined RJ-MCMC

and Parallel Tempering (PT) MCMC method. Schmidt et al.

(2001) extended their work to a Bayesian inference analysis of

the full spatiotemporal MEG/EEG data set, using their extended

region model for neural activity.

Here, we present a spatiotemporal Bayesian inference technique

for multi-dipole analysis. Compared to the full spatiotemporal

analysis for extended regions, it is faster and does not require the

use of the subject’s anatomical information. Furthermore, in

distinction to most other dipole analyses, it does not require the

prior determination of the number of dipoles.

We begin with an overview of the general techniques of

Bayesian inference. Then, we formulate the posterior probability

distribution by incorporating the relevant priors into the Bayesian

framework. To reduce computation costs and to improve MCMC

performance, the posterior probability distribution is simplified by

a marginalization technique over current time courses and a noise

covariance matrix. A speed-up strategy for computing the posterior

probability distribution is proposed, the MCMC sampling techni-

que is briefly introduced, and then noise covariance approximation

is discussed. Finally, results from experiments on simulated and

empirical data are presented.

Formulation of Bayesian inference

Bayesian inference is a general procedure for constructing a

posterior probability distribution for quantities of interest from the

measurements and the given prior probability distributions for all

uncertain parameters. The method is conceptually simple and

relatively straightforward for even complicated problems.

The starting point for Bayesian inference is Bayes’ rule of

probability:

P h;Bð Þ ¼ P hjBð ÞP Bð Þ ¼ P Bjhð ÞP hð Þ;

If h represents parameters of interest and B represents data

depending on h, then the probability of h given B is

P hjBð Þ ¼ P h;Bð Þ
P Bð Þ ¼ P Bjhð ÞP hð Þ

P Bð Þ :

Here, P(h, B) is the joint probability distribution for h and B,

P(h|B) is the conditional probability distribution of h given B,

P(B) is the marginal probability distribution of B, and P(h) is the

prior probability distribution of h, which represents one’s

information of h before measurement. P(B|h) is the likelihood

function which modifies the prior P(h) to produce the posterior

probability distribution P(B|h). Since P(B) is independent of h, it
is constant and can be omitted from the posterior density:

P hjBð Þ”P Bjhð ÞP hð Þ:
Bayes’ rule of probability formulates how prior information and

measurements can be combined and encoded in the posterior

distribution. Commonly, the obtainable posterior distribution is

complex and in such cases is numerically sampled using MCMC

techniques (Chen et al., 2000; Gilks et al., 1995).

In this work, we propose a spatiotemporal MEG/EEG dipole

analysis based on Bayesian inference. This analysis is formulated in

the following way: assuming a localized effective dipole nature of

the neuromagnetic sources that can explain the spatiotemporal data,

we construct a current model that assumes a variable number of

current dipoles of brain activity that are composed of their locations

within a sphere of some radius R0, dipole orientations, and current

time courses representing dipole magnitudes over time. Further-

more, we assume a fixed dipole model, where dipole locations and

orientations are fixed over time, but dipole magnitudes vary over

time. There can be any number N of active current dipoles from

minimum Nmin up to some maximum Nmax. We used a spherical

head model and the Sarvas forward model (Sarvas, 1987), but our

analysis could employ other forward models as well.

Given the spatiotemporal measurement set, the Bayesian

formulation is as follows:

The prior distributions are constructed as follows:

& The dipole current time course prior distribution is chosen as a

Gaussian distribution:

P JjNð Þ ¼ 1

k
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Here, |I| denotes the determinant. Ccu is the temporal correlation

matrix of one time point with another, which allows us to include

the temporal correlation at nearby latencies. ra represents the prior

standard deviation of time varying current magnitudes of each

dipole. Both Ccu and ra are predetermined based on spatiotem-

P(N, X, Q, J|B) ” P(B|N, X, Q, J) P(Q |X, N) P(J|N) P(X |N) P(N)

B T � L matrix representing observed

spatiotemporal data. L and T represent

the number of sensors and the number

of time samples in measurements, respectively.

N A priori unknown number of dipole sources.

X = (X1,X2, . . . ,

XN)

Vector of N dipole sources, with each

Xi = (xi, yi, zi) representing the location

of the i-th dipole.

J = ( J1, J2, . . . ,

JN)

Vector of N current time courses, with each

Ji = ( ji
1, ji

2, . . . , ji
T) representing signed

dipole moment magnitude over time of i-th dipole.

Negative sign means that dipole moment

orientation is reversed.

Q = (h1, h2,

. . . , hN)

Vector of N dipole moment orientations,

with each hi representing a unit tangential

direction of i-th dipole.
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