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In the statistical analysis of fMRI data, the parameter of primary interest

is the effect of a contrast; of secondary interest is its standard error, and

of tertiary interest is the standard error of this standard error, or

equivalently, the degrees of freedom (df ). In a ReML (Restricted

Maximum Likelihood) analysis, we show how spatial smoothing of

temporal autocorrelations increases the effective df (but not the

smoothness of primary or secondary parameter estimates), so that the

amount of smoothing can be chosen in advance to achieve a target df,

typically 100. This has already been done at the second level of a

hierarchical analysis by smoothing the ratio of random to fixed effects

variances (Worsley, K.J., Liao, C., Aston, J.A.D., Petre, V., Duncan,

G.H., Morales, F., Evans, A.C., 2002. A general statistical analysis for

fMRI data. NeuroImage, 15:1–15); we now show how to do it at the first

level, by smoothing autocorrelation parameters. The proposedmethod is

extremely fast and it does not require any image processing. It can be

used in conjunction with other regularization methods (Gautama, T.,

Van Hulle, M.M., in press. Optimal spatial regularisation of autocorre-

lation estimates in fMRI analysis. NeuroImage.) to avoid unnecessary

smoothing beyond 100 df. Our results on a typical 6-min, TR = 3, 1.5-T

fMRI data set show that 8.5-mm smoothing is needed to achieve 100 df,

and this results in roughly a doubling of detected activations.
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Introduction

One of the simplest models for the first level of fMRI data

analysis is the linear model with AR( p) temporal correlation

structure (Bullmore et al., 1996; Locascio et al., 1997; Marchini

and Smith, 2003; Woolrich et al., 2001; Worsley et al., 2002). The

AR( p) parameters are estimated separately at each voxel, then

spatially smoothed to reduce their variability, at the cost of slightly

increasing their bias (see Fig. 1). Until recently, the amount of

smoothing was chosen heuristically (e.g., 15 mm by the FMRI-

STAT software), but Gautama and Van Hulle (2004) have now

introduced a method to estimate the amount of smoothing in a

principled fashion. Their method is based on choosing the amount

of smoothing to best predict the autocorrelations.

In this paper, we show how the amount of smoothing influences

the effective degrees of freedom (df) of ReML (Restricted

Maximum Likelihood) estimators (Harville, 1974). The theory

uses the same techniques as Kenward and Roger (1997) and Kiebel

et al. (2003). Kenward and Roger were concerned with ReML

estimators (close to what FMRISTAT and FSL use), whereas

Kiebel applied these techniques to least-squares estimators (close

to what SPM uses). We show how the df can be approximated

before the analysis is carried out, so that in conjunction with other

regularization methods (e.g., Gautama and Van Hulle, 2004), we

can choose the amount of smoothing in advance to achieve a

targeted df. Curiously enough, this df is different for different

contrasts, and different again for an F statistic that combines

contrasts, so if more than one inference is desired from a single

smoothing, then we suggest being conservative and taking the

maximum. The proposed method is extremely fast and, unlike the

method of Gautama and Van Hulle (2004), it does not require any

image processing.

Method

We adopt a linear model for the mean of the fMRI data, with an

AR( p) model for the temporal correlation structure (Eq. (6)). This

is fitted by the pre-whitening method used by Worsley et al.

(2002), similar to that used by the FSL software, and close to

ReML, which is summarized as follows. The model is first fitted

by least-squares to find least squares residuals. These residuals are

used to calculate the temporal autocorrelations, and a simple

method is used to correct for the bias incurred by using residuals

from the fitted rather than the true model. The temporal

autocorrelations are spatially smoothed to reduce their variability,

then inserted into the Yule–Walker equations to derive the AR( p)

model coefficients. The fitted AR( p) model is used to whiten the
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data and the covariates, and the model is re-fitted. Effects of

contrasts in the coefficients, and their estimated standard errors S

(Eq. (13)), are calculated, leading to T and F statistics, and our

statistical inference.

The effect of the spatial smoothing on the effective df is as

follows. Suppose X is the n � m design matrix of the linear model

whose columns are the covariates, and let c be an m-vector of

contrasts in those columns whose effects we are interested in. Let

x ¼ x1; N ; xnð ÞV ¼ X XVXð Þ�1
c ð1Þ

be the least-squares contrast in the observations, and let sj be its

lag j autocorrelation

sj ¼
Xn

i¼ jþ 1

xixi� j=
Xn
i¼ 1

x2i : ð2Þ

Let FWHMdata be the effective FWHM of the fMRI data, and

let FWHMfilter be the FWHM of the Gaussian filter used for spatial

smoothing of the temporal autocorrelations. Let

f ¼ 1þ 2
FWHM2

filter

FWHM2
data

� ��D=2

ð3Þ

where D is the number of dimensions. Then our main result,

proved in Appendix A, is that the effective df of the contrast is

m̃mcm= 1þ 2f
Xp
j¼ 1

s2j

! 
ð4Þ

where m = n � m is the usual least-squares residual df. For an F

statistic that simultaneously tests k columns of the m � k contrast

matrix C, the effective numerator df is the same as Eq. (4) but with

x replaced by the normalized matrix of the least-squares contrasts

in the observations

x ¼ X XVXð Þ�1
C CVðXVXð Þ�1

CÞ�1=2; ð5Þ

so that xVx is the k � k identity matrix, and with the autocorrelation

sj replaced by the average of the k temporal autocorrelations of the

columns of x.

Temporal correlation of the covariates decreases effective df,

but since f V 1, spatial smoothing ameliorates this effect. Reversing

this formula (Eq. (4)), we can calculate the amount of smoothing

required to achieve a desired df. Note that this will depend on

the contrast, so we suggest being conservative by taking the

maximum of the amounts of smoothing.

Note that we can never get more than the least-squares df

without smoothing the residual variance as well, in which case the

factor f would be applied to all the terms in the denominator of

Eq. (4). Of course, we do not wish to this because the residual

variance contains too much anatomical structure, and so smoothing

could result in serious biases.

The conditions for the result (Eq. (4)) to hold are that the sample

size n must be large and the temporal correlations must be small. To

see how well this approximation holds up when these conditions

are relaxed, we carry out some simulations in the next section.

Results

Simulations

The above theoretical effective df (Eq. (4)) is derived under the

assumption that the sample size is large and the temporal

autocorrelations qj are small. In practice, sample sizes of at least

Fig. 1. Temporal autocorrelation (lag 1) of fMRI data from a pain perception experiment, with and without spatial smoothing, the corresponding T statistics for

a hot � warm effect, and the detected activation (magnified region framed on the T statistic). Note that with modest smoothing, the effective df increases, the

resulting P = 0.05 threshold decreases, and roughly twice as much activation is detected.
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