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We investigated how people use base rates and sample size information when combining data to make overall
probability judgments. Participants considered two samples from an animal population in order to estimate
the probability of that animal being aggressive. Participants' judgments were influenced by subpopulation
base rateswhen theywere provided and linked to specific samples.When sampleswere not identified as coming
from different subpopulations, judgments typically reflected sample size information. We conclude that
1) People can use base rates when combining samples to make an inference; 2) People can correctly use
sampling information to determine when to use base rates, and 3) People are able to consider base rate and
sample size information at the same time. Additionally, we found that individuals' numeracy correlates with
the extent to which base rate and sample size information is used.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Information integration

When making judgments, people today have access to information
from many different sources. If, for example, someone is interested in
determining how likely a new restaurant is to have good food, she can
visit various websites to see customer reviews. One complication of
this strategy is that different sources may provide information about
different subgroups within a population. For example, one website
might show that only 20% of 520 people like a restaurant, while on
another site 80% of 65 people report liking that restaurant. As larger
samples typically provide more reliable information (Bernoulli, 1713/
2005) it is statistically normative to weight percentage means by their
sample sizes when combining data, in this case giving the 20% statistic
more weight than the 80%. However, such a practice may not necessar-
ily yield the best estimate of the general population (e.g. the chance that
an individual will like a restaurant) when samples might represent

different subgroups (see Chesney & Obrecht, 2011, 2012). The ideal of
weighting data by sample size assumes that samples have been ran-
domly drawn from the same population. When this assumption holds
true, then indeed, larger samples provide more reliable estimates and
should be given more weight. If instead samples have been drawn
from different subpopulations (e.g. men vs. women), a better estimate
of the general population mean will be obtained by weighting sample
means in proportion to their subpopulations' prevalence in that general
population, i.e., by those subpopulations' base rates.

Here we argue that when samples represent different subpopula-
tions, it is normative to ignore sample size and instead weight data
according to their base rates. In the example above, it would be unlikely
that random samples from a population would yield diverse means of
20% and 80%, especially given how large each sample is. One might sus-
pect that the twowebsites cater to different groups of peoplewithin the
general population. If the base rates of the groups are unknown, it
would be reasonable to average the two percentages and estimate a
50% chance that a person would like the restaurant. In contrast, if one
knows that the first website with the poorer rating caters to the 5% of
Americanswhoare accustomed tofinedining,while the secondwebsite
represents the 95% of Americans who are not, one should weight the
percentage data accordingly, ignoring sample size. This would result
in an estimated 77% chance ([20%∗5%]+[80%∗95%]) that an American
would like the restaurant. If the data were instead weighted by sample
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size, the opinions of fine diners would be overweighted relative to their
numbers in the general population, yielding a very different estimate of
27% (20% [520/585]+80% [65/585]). Indeed, if a person is a typical res-
taurant customer, rather than a fine diner, she could ignore the sample
data from the fine diners altogether. However, in the current study we
focus on the general case inwhich a judgment ismade about an individ-
ual in a population whose subgroup membership is unknown.

1.2. Base rate use

Previous results are mixed regarding whether laypeople integrate
base rates into their inferences. Base rate neglect has been demon-
strated in the Bayesian reasoning literature in which people answer
conditional probability problems (e.g. Bar-Hillel, 1980; Kahneman &
Tversky, 1972). For example (Gigerenzer & Hoffrage, 1995):

“The probability of breast cancer is 1% for women at age forty who
participate in routine screening. If a woman has breast cancer, the
probability is 80% that she will get a positive mammography. If a
woman does not have breast cancer, the probability is 9.6% that
she will also get a positive mammography. A woman in this age
group had a positive mammography in a routine screening. What
is the probability that she actually has breast cancer?___%”

A correct response would integrate the hit rate (80%) with the base
rates (1% have cancer; 99% don't have cancer) and false alarm rate
(9.6%): (cancer base rate∗hit rate)/(cancer base rate∗hit rate+
no-cancer base rate∗false alarm rate)=7.8%. However, in such problems
many participants focus their responses on the hit rate, and estimate,
for example, an 80% chance that the woman has cancer (Bar-Hillel,
1980; Eddy, 1982; Gigerenzer & Hoffrage, 1995).

Bayesian reasoning is improved, however, when data are presented
as unstandardized natural frequencies that express probability in terms
of subsets within a greater super set (Brase, 2008; Gigerenzer &
Hoffrage, 1995; Obrecht, Anderson, Schulkin, & Chapman, 2012). For
example, analogous to the problem above:

“10 out of every 1,000 women at age forty who participate in rou-
tine screening have breast cancer. 8 of every 10 women with
breast cancer will get a positive mammography. 95 out of every
990 women without breast cancer will also get a positive mam-
mography. Here is a new representative sample of women at age
forty who got a positive mammography in routine. How many of
these women do you expect to actually have breast cancer?”
(Gigerenzer & Hoffrage, 1995).

Such natural frequency formats simplify the conditional probabil-
ity computation and make set-subset relationships clear which re-
sults in greater use of base rates (Evans, Handley, Perham, Over, &
Thompson, 2000; Fiedler, Brinkmann, Betsch, & Wild, 2000; Girotto
& Gonzalez, 2001; Macchi, 2000; Neace, Michaud, Bolling, Deer, &
Zecevic, 2008; Yamagishi, 2003).

In another variation of base rate studies, participants are given
base rate information about a group made up of two kinds of individ-
uals (e.g. there are 70 engineers and 30 lawyers) and also a personal-
ity description of an individual that they are told was randomly
drawn from the group. As an example, a personality description
might state “Tom W. is of high intelligence, is quite self-confident,
and tends to be argumentative…”. The participants' task is to judge
the profession of the individual (e.g. engineer or lawyer). The person-
ality description is designed to be stereotypical of one of the sub-
groups. Here Tom's description may sound typical of a lawyer, but
base rate data suggests that lawyer are less common in the group
(out of 100 men, 70 are engineers and 30 are lawyers). The classic
outcome is that personality descriptions trump base rates; most peo-
ple say that the individual belongs to the group that matches the

personality, even when that group has the lower base rate (Tversky
& Kahneman, 1974).

Again, although this study casts doubt, other findings are more
optimistic about humans' abilities to use base rates when making judg-
ments. The order in which base rates are presented, relative to individ-
ual personality descriptions, like Tom's above, has been shown to
influence judgments (Krosnick, Li, & Lehman, 1990). When base rates
are presented after, rather than before, individual descriptions, judg-
ments more closely reflect the base rate information (Krosnick et al.,
1990; Obrecht, Chapman, & Gelman, 2009). Also, base rate use in-
creases when sampling procedures are shown to be random
(Gigerenzer, Hell, & Blank, 1988), and under a variety of other conditions
(e.g. Bar-Hillel & Fischhoff, 1981; Schwarz, Strack, Hilton, & Naderer,
1991). Further, relating causal mechanisms to base rates in Bayesian
problems increases base rate use (Tversky & Kahneman, 1980; also see
Krynski & Tenenbaum, 2007).

A recent study by Pennycook and Thompson (2012) further tempers
the conclusions which can be drawn from Tversky and Kahneman's
(1974) seminal base rate neglect finding that stereotypical personality
descriptions trump base rates when judging group membership.
Pennycook and Thompson found that when participants were given
just personality descriptions, without any base rate information, and
were asked to judge the chances that a person belonged to a group
(e.g. lawyer), responses were quite variable, typically falling between
50 and 100%. However, when base rates were also given, andwere con-
gruentwith personality data (i.e.when personality descriptions favored
the large base rate group) participants gave highly consistent probabil-
ity estimates regarding the chances of a person belonging to the larger
base rate group (i.e. most responses were between 90 and 100%). This
decrease in the variability of responses indicates that when data are
consistent with one another, people can integrate both base rates and
personality descriptions together to make judgments. Moreover, as
these patterns were seen even when participants were under time
pressure, this suggests that “reasoning with base rates is…relatively
effortless” (Pennycook & Thompson, 2012). However, the response pat-
tern seen when personality and base rate information were consistent
sharply contrasts to the bimodal responses that were seen when base
rates and personality descriptions conflicted; here some responses
appeared to reflect the base rate data, and others the personality infor-
mation (Pennycook & Thompson, 2012). Overall, the literature on both
the Bayesian and personality problems demonstrates that people use
base rates under some conditions, such as when problems are simpli-
fied (e.g. Gigerenzer & Hoffrage, 1995), although this factor is some-
times underweighted relative to normative standards (see Kahneman
& Tversky, 1996).

1.3. Sample size

Another factor that is of interest to our current study is sample size.
As with base rates, the literature is somewhat mixed in regard to
people's ability to use sample sizewhenmaking judgments.When peo-
ple use a sample to make an inference to a population, they are gener-
ally more confident in their judgments when the provided sample is
comprised of a larger, rather than smaller, number of items (e.g. Irwin,
Smith, & Mayfield, 1956; Jacobs & Narloch, 2001; Nisbett, Krantz,
Jepson, & Kunda, 1983). For example, when asked tomake an inference
about the average value of a deck of cards, people aremore confident in
their judgment after viewing a sample of 20, rather than 10, cards
(Irwin et al., 1956). This appreciation for larger samples is also seen in
tasks where people compare data from two populations in order to
judge which has the higher mean value (Fouriezos, Rubenfeld, &
Capstick, 2008; Masnick & Morris, 2008; Obrecht, Chapman, &
Gelman, 2007; Obrecht, Chapman, & Suárez, 2010). In contrast, some
studies have shown that the weight given to sample size is overly
small or inconsistent (Bar-Hillel, 1979; Obrecht et al., 2007), and other
research has shown sample size to be almost entirely neglected or
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