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In the context of climate change, the frequency and intensity of natural disturbances of silvicultural
production, such as storms and insects, are expected to increase. Hence, now more than ever before such
factors must be considered in forest management. As a contribution to this topic, this article presents a
calculation model implemented in Excel frames, which supports decisions in forest production under
changing conditions. Risk is integrated into the model by the Weibull function, which serves as an age-
dependent survival function. In order to facilitate an intuitive interpretation of its coefficients, it was used in a
reparametrised form. Furthermore, salvage price reductions and cost additions caused by calamities are
considered. The target variable is the ‘annuity under risk’.
We demonstrate exemplarily how different parameters of the survival function influence the probability
distribution and thus the expected value of the annuity of a spruce stand. The differences between the
annuities with and without a consideration of risk are interpreted as current, annual risk costs. It can be
shown that risk lowers the annuity, whereas scenarios with high risks in the young stand stages have a higher
impact than those with high risks in mature stands. In the latter case, adaptation is possible by shortening the
rotation period. This does not hold in the case of early risks, which cannot be avoided. For this case, an
extension of the rotation length is recommended.
By changing the parameters of the survival function, this scheme allows forest managers to incorporate
changing risks into their management planning.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and problem outline

Natural disturbances caused by storms, droughts and insects, are —

to different extents — an integral part of forest ecosystems (Otto, 1994,
pp. 322). To forest managers, however, they constitute considerable
risks because they interfere with scheduled operating procedures and
objectives, cause additional costs for salvage-harvesting and replanting
and decrease revenues from timber sales. As a result of climate change,
for central Europe a considerable increase of risks is expected, which is
especially caused by lower levels of precipitation during the vegetation
period and more frequent droughts and storms (Federal Environment
Agency, 2008). Most notably since the 1980s, scientific publications
dealing with the causes and the scope as well as with the economic
implications of natural hazards in forest management were corre-
spondingly numerous.

Accordingly, in their review articles, Brumelle et al. (1990) and
Newman (2002) refer to publications that address the integration of
risks into decision models by means of explicit computations of

probability distributions of payoffs as a function of activities.
Bongiorno (2001), for example, describes the stochastically influ-
enced development of a forest using aMarkov decision process (MDP)
model, which implicates discrete transition probabilities. The objec-
tive is to determine the best decision policy, which maximises the soil
expectation value. Numerical solutions for this purpose are found using
either successive approximations or linear programming. Kuboyama
and Oka (2000) analysed long term data on climate-induced forest
damages based on the ‘Statistical Yearbook of National Forest Insurance’
of Japan to derive empirical, age-class dependent damage probabilities.
Using these probabilities they determined the optimal rotation age by
means of Monte Carlo simulations (Metropolis and Ulam, 1949). The
same approach was used by Dieter (2001), who calculated risk-
influenced soil expectation values for beech and spruce in southern
Germany.However, risksweredescribedbymeansof survival functions,
which model the chronological sequence of survival probabilities
depending on tree species and site conditions. Similar approaches
were pursued by others, including Knoke and Wurm (2006) and
Beinhofer (2007). On the huge body of literature on forest economics
under risk see, e.g., Brumelle et al. (1990) and Newman (2002).

Considerations of these findings in the practice of forestry were
proposed, e.g., by Kurth et al. (1987), König (1999) and Kohnle et al.
(2008). However, in spite of the fact, that natural risks have a large

Forest Policy and Economics 13 (2011) 496–502

⁎ Corresponding author at: ARGUS Forstplanung, Büsgenweg 5, 37077 Göttingen,
Germany. Tel.: +49 551 39 3476; fax: +49 551 39 5767.

E-mail address: staupendahl@argus-forstplanung.de (K. Staupendahl).

1389-9341/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.forpol.2011.05.007

Contents lists available at ScienceDirect

Forest Policy and Economics

j ourna l homepage: www.e lsev ie r.com/ locate / fo rpo l

http://dx.doi.org/10.1016/j.forpol.2011.05.007
mailto:staupendahl@argus-forstplanung.de
http://dx.doi.org/10.1016/j.forpol.2011.05.007
http://www.sciencedirect.com/science/journal/13899341


economic impact on forest management, namely on the selection of
tree species, thinning practices and rotation cycles, standardised
forms of quantification of natural risks and risk management systems
have yet to be established in Germany (Gadow, 2000; Gautschi, 2003).
In 1990 even Brumelle et al. stated that in practice the explicit use of
stochastic approaches in decision-making is rare.

This is the essential starting point of the present article, which is
the elaborated version of the paper of Möhring et al. (2010) with a
more detailed description of the methodology. One objective is to
develop an applicablemethod for quantifying the calamity-influenced
survival probabilities of forest stands. Therefore, the authors use the
so-called survival function, the theoretical fundamentals of which are
described briefly in the context of survival analysis.1 In this article, the
survival function follows theWeibull distribution, but it was used in a
reparametrised form (see Staupendahl, 2011) that makes it easy to
interpret its coefficients. Furthermore, a method is shown that allows
the immediate calculation of the ‘annuity under risk’, which
supersedes the application of iterative or numerical methods like
the Monte Carlo technique or linear programming. Finally, by means
of calculations with different survival functions, it is shown how the
costs of risk and the risk-adjusted optimal rotation age can be
determined. This approach, the authors hope, will contribute to the
enhancement of decision-making in forestry (see also Deegen, 1994)
and will promote the integration of risks into practical forest planning
and evaluation.

2. The survival function

Whenever the economic impact of natural risks in forestry is to be
quantified, knowledge of the probability that a given stand at a
specific site reaches or even exceeds a specific age is required. The
probability of survival can alternatively be interpreted as the share of
the afforested area that, on average, is still present at a specific age.

2.1. Fundamentals about the survival function

The probability of survival is a central term of survival analysis,
which investigates the distribution of the non-negative random
variable T, whereas T describes the point of time in which an event of
interest occurs (a special realisation of T is denoted by t). Here, T is
defined as the ‘stand age at the time of a calamity-induced dropout’.
According to Klein and Moeschberger (1997, pp. 21), the pattern of T
can usually be characterised by the following four functions.

The probability density function f(t) describes the frequency
distribution of the points in time, in which the event occurs. In the
case of approximate continuously measured time, it is defined as

f tð Þ = lim
Δt→0

P t≤Tbt + Δtð Þ
Δt

;with t≥0: ð1Þ

For small Δt, f(t)Δt may be thought of as the approximate
unconditional probability that the dropout will occur at time t. The
cumulative distribution function F(t), as the integral of the density
function, gives the probability that a drop-out has occurred by time t:

F tð Þ = P T≤tð Þ = ∫
t

0

f xð Þdx: ð2Þ

The survival function S(t) is the complement of F(t). Thus, it gives
the probability that a stand survives at least time t:

S tð Þ = P TNtð Þ = 1−F tð Þ: ð3Þ

The probability that the event occurs at a certain time, conditional
on the subject having survived to that time, is also important. The
density of this conditional drop-out probability is called the risk or
hazard function (hazard rate) h(t), defined as

h tð Þ = lim
Δt→0

P t≤Tbt + ΔtjT≥tð Þ
Δt

=
f tð Þ
S tð Þ : ð4Þ

The hazard rate is a non-negative function and describes the
instantaneous tendency to a state change, given that a state change
did not occur previously (Ludwig-Mayerhofer, 2009). For small Δt, h
(t)Δt gives an approximation of the conditional drop-out probability.
The hazard function characterises the risk of failure depending on the
survival time. For ageing systems, its value increases with increasing
age; the longer such a system survives, the higher its risk of failure is.

In the case of discrete time, which is normally considered in forest
practice, the unconditional probability that a newly established forest
stand drops out in age class i, is given by

f tið Þ = P T = tið Þ = S ti−1ð Þ−S tið Þ; ð5Þ

where ti denotes the average of age class i and S(ti) gives the discrete
survival function, with i=1,2,…, t0=0 and S(t0)=1. Accordingly, the
time discrete hazard rate (Fahrmeir, 2007, pp. 26) gives the
conditional probability that a stand, which survived until age class i,
drops out in this age class:

h tið Þ = P T = tijT≥tið Þ = f tið Þ
S ti−1ð Þ ð6Þ

In otherwords, h(ti) indicates the fraction of the area in age class i−1,
which is dropped out on average in age class i. Thus, h(ti) is the
complementary value to the transitional probability p(ti), which was
introduced to forestry by Suzuki (1971, 1983) and is widely used in the
literature (e.g., Möhring, 1986; Kurth et al., 1987; Deegen, 1994). The
discrete survival probability S(ti) can be calculated as the product of these
transitional probabilities:

S tið Þ ∏
i

j=1
p tið Þ;withp tið Þ = 1−h tið Þ: ð7Þ

Several distribution types are available to give the parametric
description of T, including the exponential, log-normal or log-logistic
distributions. Here, according to Pienaar and Shiver (1981), Kouba
(2002) and Holecy and Hanewinkel (2006), the Weibull distribution
(Weibull, 1951) was chosen because it requires only two parameters
while at the same time being quite flexible. If T is Weibull distributed
with scale parameter β and shape parameter α, the density,
distribution, survival and hazard function are given as follows, with
tN0 (Klein and Moeschberger, 1997, p. 37)2:

f tð Þ = a
β
:

t
β

� �a−1
: exp − t

β

� �a� �
ð8Þ

F tð Þ = 1−exp − t
β

� �a� �
ð9Þ

S tð Þ = exp − t
β

� �a� �
ð10Þ

1 Survival analysis is most often defined as a class of statistical methods for studying
the occurrence and timing of events — most often death (e.g., Cox and Oakes, 1984).

2 However, an alternative notation is used in this paper, whereas λ, given by Klein
and Moeschberger (1997, p. 37) equals to β-α.
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