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Abstract

In the minimum inhibitory concentration (MIC) test literature, discussion concerning the effect of laboratory-to-laboratory variation is

lacking. We present 2 sets of drug dilution test quality control data that illustrate considerable laboratory differences in measured MIC. In

both isolates (Escherichia coli, ATCC 25922; Staphylococcus aureus, ATCC 29213) the laboratory-to-laboratory variability accounts for

approximately half of the total variability. We illustrate the impact of this variability on the probability of correctly classifying the

susceptibility level of an isolate and on the estimation of resistance prevalence. For example, we show that laboratory differences in the

probability of correctly classifying the isolate (specifically near the lower breakpoint) can vary up to 80%.
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1. Introduction

To determine the susceptibility of an unknown pathogen

to a specific drug, a laboratory often performs a broth

dilution test, such as a 2-fold minimum inhibitory concen-

tration (MIC) test. For this type of test, the observed MIC is

classified into one of 3 categories (susceptible, intermediate,

or resistant) based on lower and upper MIC breakpoints. It

is common for the intermediate range (distance between the

breakpoints) to be one dilution.

Repeated laboratory experiments using the same patho-

gen/drug combination commonly show a 3-fold dilution

range in the observed MIC. This measurement or experi-

mental variability is most likely because of variations in

inoculum size, incubation time, temperature, and other

environmental factors. Given the relatively narrow interme-

diate range, this variability can seriously impact the ability

to correctly classify a pathogen if its true MIC were near the

breakpoints (Craig, 2000).

In this article, we address another important source of

variability, the interlaboratory variability, and its effect on

the ability to correctly classify a pathogen and estimate the

prevalence of pathogen resistance. Using MIC quality

control data and the statistical model presented by Craig

(2000), we demonstrate the large impact this error can have

on classification when the isolate’s MIC is near the

breakpoint.

2. Materials and methods

In the standard MIC broth dilution test, 2-fold dilutions

are performed, with the observed MIC being the lowest

2-fold dilution without visible growth. For the remainder of

this article, consider the observed MIC in terms of

binary logarithmic (log 2) units such that the test results

are integer values (e.g., 0.5 Ag/mL = �1 and 1.0 Ag/mL = 0

and 2.0 Ag/mL = 1).

2.1. The model

We used data from quality control experiments involving

repeated measurements of MIC both within and across

laboratories. An upward-rounded, hierarchical normal mod-

el is used to describe the distribution of the observed MIC at

each laboratory (Craig, 2000). Under this formulation, the

ith laboratory has a MIC, li, which represents the exact

concentration of the drug required to inhibit the particular

isolate. To account for experimental variation, the jth

0732-8893/$ – see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.diagmicrobio.2005.03.012

T Corresponding author. Tel.: +1-831-656-2590; fax: +1-831-656-2595.

E-mail address: annis@nps.edu (D.H. Annis).

Diagnostic Microbiology and Infectious Disease 53 (2005) 61–64

www.elsevier.com/locate/diagmicrobio



measurable MIC at the ith laboratory, xi,j, is assumed to be

normally distributed with mean li and variance re
2.

To allow for interlaboratory variability, we assume that

the laboratory-specific MICs follow a normal distribution

with mean h and variance rL
2. Thus, h represents the true

underlying MIC for the isolate, and the quantities rL
2 and re

2

represent the magnitudes of variation attributable to

interlaboratory differences and experimental error, respec-

tively. This orthogonal decomposition of variance is a

common approach to account for several sources of

variability. With additional information, this interlaboratory

variability could be further broken down to account for

other sources of variability such as day-to-day variation. As

an alternative approach, one could assume these errors

follow a specific correlation structure, but for our purposes,

the particular choice of model does not matter.

The upward-rounding inherent in this procedure implies

that the ith observed value at the ith laboratory is yi,j = qxi,j a =
qli + ei,j a = qh + di + ei,j a, where di ~ N(0, rL

2) is the the

ith laboratory effect and ei,j ~ N(0, re
2) is the experimental

error. The qd a notation represents the bceilingQ function,

which returns the smallest integer greater than or equal to its

argument (e.g., q1.28a = 2). Therefore, the probability that an

observed MIC, yi,j, at laboratory i will be integer k is the

probability that the underlying measurable MIC, xi,j, is

contained in the interval (k � 1, k]. This can be expressed as

Pr yi;j ¼ kli

� �
¼ U

k � li

re

�
� U

k � 1� li

re

�
;

��

where li is the mean MIC at laboratory i and U(d ) is the

standard normal cumulative distribution function.

2.2. The data

Table 1A and B presents quality control data from the

National Committee on Clinical Laboratory Standards

Subcommittee on Antimicrobial Susceptibility Testing

(S. Cullen, personal communication) involving 50 measure-

ments of the observed MIC (for an unspecified drug or

drugs) taken on the same strain of Escherichia coli and

Staphylococcus aureus, respectively, at 10 different labora-

tories. These quality control studies typically include at least

7 laboratories with replicates (i.e., individually prepared

inoculum suspensions) tested using at least 3 different media

lots over a 3- to 4-day period.

The expectation maximization (EM) algorithm of Demp-

ster et al. (1977) can be used to compute laboratory-specific

(censored) maximum likelihood estimates of the mean

assuming the previously described model. Wolynetz

(1979) details the implementation of the expectation

maximization procedure for a censored normal population.

These laboratory-specific estimates differ by as much as 0.8

and 1.1 dilutions for the E. coli and S. aureus data,

respectively. Differences of this magnitude are striking,

because the 1.1-unit dilution range is wider than the

intermediate classification range of 1 unit.

3. Results

Under our proposed hierarchy, xi,j ~ N(h, rL
2 + re

2) and

Cov(xi,j, xi,k)=re
2; j p k after integrating out the unknown

laboratory means li. The observed MICs are interval-

censored observations of the realized xi ,j’s. Maximum

likelihood estimates of rL
2 and re

2 can be obtained

numerically. However, because the data are heavily cen-

sored, numerical maximum likelihood estimates can be

unstable (especially when one variance component is near

zero). A Bayesian approach using diffuse (essentially

noninformative) prior distributions remedies this concern.

(R code for either numerical maximum likelihood or for

Bayesian computations is available from the authors. The

Bayesian solution requires WinBUGS, which is available at

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.

shtml.)

For the E. coli data in Table 1A, the posterior estimates

of variance components are r̂L
2 = 0.101 and r̂e

2 = 0.136,

indicating that the interlaboratory variation accounts for

43% of total variation. For the S. aureus data in Table 1B,

r̂L
2=0.241 and r̂ e

2=0.198, which suggest that laboratory-

to-laboratory differences account for approximately 55% of

the total variability.

Permutation tests were conducted to determine whether

laboratory differences contribute a statistically significant

amount of variation. Under the null hypothesis that there are

Table 1

Quality control data for E. coli (ATCC 25922) and S. aureus (ATCC

29213) show large variation in reported MIC from laboratory to laboratory

A. E. coli (ATCC 25922)

Observed MIC

Laboratory �8 �7 �6 �5 Mean

I 8 36 6 – �7.54

II 6 41 3 – �7.57

III 7 32 11 – �7.42

IV – 48 2 – �7.13

V 2 48 – – �7.68

VI – 33 17 – �7.10

VII 7 41 2 – �7.62

VIII – 15 35 – �6.88

IX – 33 16 1 �7.12

X 1 35 14 – �7.22

All 31 362 106 1 �7.34

B. S. aureus (ATCC 29213)

Observed MIC

Laboratory �8 �7 �6 �5 �4 �3 Mean

I – 14 34 2 – – �6.75

II – – �24 26 – – �5.99

III – 19 29 2 – – �6.84

IV – – 37 8 4 1 �6.11

V – 2 45 3 – – �6.47

VI – 3 33 14 – – �6.28

VII – 12 36 2 – – �6.71

VIII – 2 8 40 – – �5.76

IX – – 50 – – – �6.50

X 1 19 27 3 – – �6.86

All 1 71 323 100 4 1 �6.42

D.H. Annis, B.A. Craig / Diagnostic Microbiology and Infectious Disease 53 (2005) 61–6462

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml


Download English Version:

https://daneshyari.com/en/article/9263367

Download Persian Version:

https://daneshyari.com/article/9263367

Daneshyari.com

https://daneshyari.com/en/article/9263367
https://daneshyari.com/article/9263367
https://daneshyari.com

