

Journal of Autoimmunity 24 (2005) 281-289



www.elsevier.com/locate/issn/08968411

# 1α,25-Dihydroxyvitamin D<sub>3</sub> restores thymocyte apoptosis sensitivity in non-obese diabetic (NOD) mice through dendritic cells

B. Decallonne, E. van Etten, L. Overbergh, D. Valckx, R. Bouillon, C. Mathieu\*

Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Catholic University of Leuven, Onderwijs en Navorsing, Herestraat 49, 3000 Leuven, Belgium

Received 15 July 2004; revised 14 March 2005; accepted 15 March 2005

## Abstract

Aims/hypothesis: Resistance of NOD thymocytes to apoptosis-inducing signals is restored by  $1\alpha$ ,25-dihydroxyvitamin D<sub>3</sub> ( $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub>), a therapy preventing diabetes in NOD mice. We studied whether modulation of thymocyte apoptosis is due to direct effects on thymic T lymphocytes or indirect effects via thymic dendritic cells, since both cell types constitute known targets for  $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub>.

Methods and results: Female NOD mice were treated with  $1\alpha,25(OH)_2D_3$  (5 µg/kg/2d) from 21 to 70 days. Vehicle-treated NOD and NOR mice served as controls. Analysis of thymic T lymphocytes from  $1\alpha,25(OH)_2D_3$ -treated mice revealed a decrease in number of apoptosis-resistant CD4<sup>+</sup>CD8<sup>+</sup> and CD4<sup>+</sup>CD8<sup>-</sup>HSA<sup>high</sup> T lymphocyte subsets, higher pro-apoptotic IL-2 and FasL, and lower anti-apoptotic Bclx-L mRNA expression levels. Thymic dendritic cells from  $1\alpha,25(OH)_2D_3$ -treated NOD mice had increased CD8 $\alpha^+$ FasL<sup>+</sup> and CD80<sup>+</sup>/86<sup>+</sup> expression compared to control NOD mice. In a syngeneic co-culture system of thymocytes and thymic dendritic cells, apoptosis levels were 20% higher only in co-cultures where both T cell- and dendritic cell-compartments originated from  $1\alpha,25(OH)_2D_3$ -treated mice. Activation-induced cell death-sensitivity in peripheral T lymphocytes was comparable to levels present in NOR mice, confirming better thymic selection in  $1\alpha,25(OH)_2D_3$ -treated mice.

Conclusion/interpretation: We conclude that  $1\alpha$ , 25(OH)<sub>2</sub>D<sub>3</sub> needs both thymic T cell- and dendritic cell-compartments to exert its apoptosis-restorative effects in NOD thymocytes.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Type 1 diabetes; Apoptosis; NOD mice; Thymus; Vitamin D

## 1. Introduction

Type 1 diabetes is an organ-specific T lymphocytemediated autoimmune disease, characterised by destruction of insulin producing pancreatic  $\beta$  cells with subsequent development of hyperglycaemia and insulin dependence. Since exogenous insulin therapy is not able to completely avoid long-term complications and subsequent enormous health care costs, an etiologic more than a purely symptomatic treatment is urgently needed, aiming at prevention of diabetes. Prevention, however, supposes insight in the early pathogenic mechanisms,

Abbreviations: NOD, non-obese diabetic; NOR, non-obese diabetes-resistant;  $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub>,  $1\alpha$ ,25-dihydroxyvitamin D<sub>3</sub>; DC, dendritic cell; APC, antigen-presenting cell; mAb, monoclonal antibody; TUNEL, terminal deoxynucleotidyl transferase (TdT)-mediated FITC-dUTP nick end labelling reaction; AICD, activation-induced cell death.

<sup>\*</sup> Corresponding author. Tel.: +32 16 345970; fax: +32 16 345934.

*E-mail address:* chantal.mathieu@med.kuleuven.ac.be (C. Mathieu).

<sup>0896-8411/\$ -</sup> see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jaut.2005.03.007

before disease becomes overt. Previous studies in prediabetic NOD mice, a mouse model for human type 1 diabetes, demonstrated several defects in the immune system, both in the T cell and antigen-presenting cell (APC) compartments [1]. Immunomodulation at young age, aiming at re-setting one or several immune dysregulations, thus seems a logical approach in the prevention of autoimmune diabetes. Life long treatment with high doses of  $1\alpha$ , 25-dihydroxyvitamin D<sub>3</sub>  $(1\alpha, 25(OH)_2D_3)$ , the activated form of vitamin D, prevents diabetes in NOD mice [2]. Further research on its mechanism of action in primary prevention revealed that  $1\alpha$ ,  $25(OH)_2D_3$  induced a restoration of T lymphocyte sensitivity to in vivo apoptosis-inducing signals (dexamethasone, cyclophosphamide), especially in the thymus [3,4]. No general immune suppression was observed.

Abnormal T cell selection, which has been reported in NOD mice [5,6], can be due to aberrations in the T lymphocytes themselves or in the thymic APC compartment, responsible for the presentation of (auto)antigen to thymic T lymphocytes. Dendritic cells (DCs) represent crucial APCs and several DC abnormalities have been described in NOD mice [7-12]. Moreover, DCs constitute important target cells for the action of  $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub> [13]. The aim of this work was to study whether modulation of thymocyte apoptosis sensitivity by  $1\alpha, 25(OH)_2D_3$  is due to direct effects on T lymphocytes or indirect effects on thymic DCs. The data presented here demonstrate that direct effects of  $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub> on T lymphocytes combined with indirect effects on DCs are indispensable for final modulation of central T cell apoptosis sensitivity.

### 2. Materials and methods

## 2.1. Animals

NOD mice, originally obtained from Professor Wu (Bejing, China) were housed and inbred in our animal facility since 1989. Housing occurred under semi-barrier conditions and animals were fed sterile chow and water ad libitum [14]. The principles of laboratory animal care were followed (NIH publication no. 85-23, revised 1985) and all experiments were approved by the local ethical committee for animal experiments of the Catholic University of Leuven. Insulitis develops from 4 weeks onward, reaching an incidence of 80% at 70 days of age and >95% at 200 days of age. At the time of the experiments, the cumulative incidence of spontaneous diabetes in our colony ranged from 55 to 76% in females and from 10 to 52% in males of 200 days of age. Nondiabetic female NOD mice aged 8-12 weeks were used. Age-matched female NOR/Ltj mice (Jackson Laboratories, Bar Harbor, ME) were used as an MHC-matched diabetes-resistant control strain for NOD mice [15].

### 2.2. $1\alpha$ , $25(OH)_2D_3$ treatment regimen

 $1\alpha$ ,25(OH)<sub>2</sub>D<sub>3</sub>, kindly provided by JP Van de Velde (Solvay, Weesp, The Netherlands), was administered intraperitoneally at a dose of 5 µg/kg every other day from the age of 3 weeks until sacrifice. The control group was treated with arachis oil (vehicle).

## 2.3. Ex vivo thymic DC and T lymphocyte isolation

Thymuses were isolated after the mice were etheranesthetised and bled. CD11c (the integrin- $\alpha_x$  chain) was considered as marker for mature thymic DCs. Within the thymus, only DCs express CD11c. DCs were isolated from thymuses with CD11c-magnetically labelled beads (Miltenyi Biotec, Bergisch Gladbach, Germany) using magnetic cell sorting (MACS) technology. Briefly, 2-6 thymuses were pooled per experimental group and per experiment. A single cell suspension was prepared and cells were counted. The cell suspension was incubated on ice with the CD11c-magnetically labelled beads (10 µl beads + 40 µl sterile PBS supplemented with 0.5% BSA and 2 mM EDTA (further referred to as  $PBS^+$ )/10 × 10<sup>6</sup> cells) during 20 min. Cells were then washed and resuspended in a constant volume of 500 µl PBS<sup>+</sup>. Positive selection of CD11cmagnetically labelled cells was performed on LS columns (Miltenyi Biotec) following the manufacturer's protocol. Purity was determined by FITC-CD11c mAb (clone HL3, BD Pharmingen, San Diego, CA) staining and subsequent flow cytometric analysis (FACScan, Becton Dickinson, Mountain View, CA) using Cell Quest software. By this procedure CD11c<sup>+</sup> thymic DCs were enriched 30-fold (from  $0.5 \pm 0.3\%$  in total thymus cell population to  $15 \pm 3\%$  after MACS CD11c-positive selection). The thymic CD11c-negative fraction obtained after MACS, containing >98% T lymphocytes, was considered as T lymphocyte fraction.

# 2.4. Surface phenotyping of dendritic cells and T lymphocytes

CD11c was used as marker for DCs. For thymic DCs, representing only 0.5% of the total thymic cell population, a two-step purification was performed in order to enable adequate ex vivo DC phenotyping of a sufficient number of DCs. First, CD11c-positive selection was performed with MACS as described above, resulting in  $\pm 15\%$  CD11c<sup>+</sup> cells. Second, all samples were double-stained with CD11c mAb (FITC or PE, clone HL3) and one of the surface markers of interest: anti-mouse PE-CD11b (clone M1/70), FITC-CD40 (clone HM 40-3), PE-CD54 (clone 3E2),

Download English Version:

https://daneshyari.com/en/article/9267867

Download Persian Version:

https://daneshyari.com/article/9267867

Daneshyari.com