

www.fems-microbiology.org

The Campylobacter jejuni glycome ☆

Andrey V. Karlyshev a, Julian M. Ketley b, Brendan W. Wren a,*

Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, UK
Department of Genetics, University of Leicester, Leicester LE1 7RH, UK

Received 14 December 2004; received in revised form 21 January 2005; accepted 21 January 2005

First published online 1 February 2005

Abstract

Microbial cell surface glycans in the form of glycolipids and glycoproteins frequently play important roles in cell-cell interaction and host immune responses. Given the likely importance of these surface structures in the survival and pathogenesis of *Campylobacter jejuni*, a concerted effort has been made to characterise these determinants genetically and structurally since the genome was sequenced in 2000. We review the considerable progress made in characterising the *Campylobacter* glycome including the lipooligosaccharide (LOS), the capsule and *O*- and *N*-linked protein glycosylation systems, and speculate on the roles played by glycan surface structures in the life-cycle of *C. jejuni*.

© 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Campylobacter jejuni; Glycome; Lipooligosaccharide; Capsule; Glycosylated flagellin; N-linked glycosylation system

Contents

1.	Introduction	378
2.	Lipooligosaccharide (LOS)	378
	2.1. Lipopolysaccharide biosynthesis by <i>C. jejuni</i>	379
	2.2. LOS structure in NCTC 11168	379
	2.3. Genetic basis of LOS biosynthesis in <i>C. jejuni</i> NCTC 11168	379
	2.4. Variation of LOS structure	381
	2.5. Role of LOS in <i>C. jejuni</i> -mediated disease	383
3.	Capsular polysaccharide	384
	3.1. Capsule polysaccharide structure	384
	3.2. Capsule genetic diversity	384
4.	O-linked protein glycosylation	385
	4.1. Glycan structure of modified flagellin	385
	4.2. Genetic organisation and diversity of the <i>O</i> -linked flagella glycosylation system	386
5.	N-linked protein glycosylation	386
	5.1. Structure of <i>N</i> -linked glycan	386
	5.2. Genetic basis of <i>N</i> -linked glycosylation system	386

E-mail address: brendan.wren@lshtm.ac.uk (B.W. Wren).

Edited by Charles W. Penn.

^{*} Corresponding author.

	5.3. Role of <i>N</i> -linked glycosylation system	387
6.	Conclusion	387
	Acknowledgements	388
	References	388

1. Introduction

The Gram-negative bacterium Campylobacter jejuni is the principal bacterial cause of human gastroenteritis world-wide [1]. C. jejuni is also the most frequent antecedent infection responsible for the post-infectious peripheral neuropathy Guillain-Barré syndrome, which is thought to be triggered by mimicry with surface exposed carbohydrate structures. The main source of transmission is through the consumption of livestock, particularly poultry where invariably flocks are heavily contaminated with up to 109 Campylobacter, yet are asymptomatic. By contrast as few as 10² cells is sufficient to cause severe disease in humans. Given the medical and public health importance of Campylobacter infection, it is remarkable that C. jejuni is one of the least understood enteropathogens. The lack of understanding of how the organism causes disease was the driving force for the instigation of the C. jejuni NCTC 11168 genome sequencing project that was completed in 2000 [2].

The sequencing of NCTC 11168 revealed a previously unexpected capacity for the organism to produce a variety of carbohydrates [2]. Subsequent analyses have demonstrated the presence of several cell surface glycoconjugates such as a novel capsule and *N*-linked glycosylation pathway, as well as providing rich data on the lipooligosaccharide (LOS) and the *O*-linked glycosylation system that decorates the flagellum (Fig. 1). A striking feature from the genome project was the presence of several hypervariable homopolymeric repeats responsible for slipped-strand mispairing and phase variation in glycan moieties present in LOS, capsule and flagella [2]. Further studies have shown that the loci

responsible for the biosynthesis of these molecules are highly variable among different strains [3–7]. This is in contrast to the N-linked general glycosylation pathway that appears highly conserved, even among some other Campylobacter species [12]. Recent studies have allowed the detailed structural analysis of the glycan components of the glycolipids and glycoproteins [9], which has facilitated studies to determine gene function in the respective biosynthetic pathways [10,11]. This review will summarise the post genome genetic and structural studies on the C. jejuni glycolipids (LOS and capsule) and the O- and N-linked glycosylation pathways. Because there have been two recent reviews on the Campylobacter glycosylation systems [10,12], the emphasis on this current review will be on Campylobacter LOS and capsule. We will also speculate on the possible biological roles of these structural surface determinants and why some appear to be hypervariable.

2. Lipooligosaccharide (LOS)

Forming an integral part of the cell, lipid A substituted polysaccharide (PS) forms an essential cell surface structure as part of the outer leaflet of the outer membrane lipid bilayer. In addition to maintaining the structural integrity of the bacterium via a barrier function to substances entering or leaving the cell, modulation of the attached PS provides a strategy for avoidance of the host immune system. In most gram negative bacteria, lipid A is substituted with a core PS to which is attached a set of repeating subunits termed the O-chain; this structure is termed lipopolysaccharide (LPS). How-

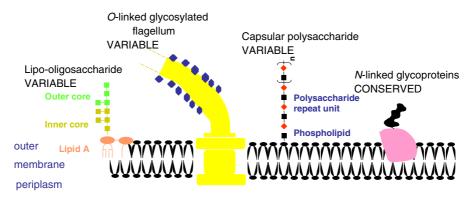


Fig. 1. The known glycolipids and glycoproteins in C. jejuni.

Download English Version:

https://daneshyari.com/en/article/9278672

Download Persian Version:

 $\underline{https://daneshyari.com/article/9278672}$

Daneshyari.com