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1. Introduction

To perform goal-directed arm movements, the central nervous system needs to integrate informa-
tion about target location and arm/hand location in order to compute motor commands that drive the
limb to the desired goal. It is widely accepted that movements are encoded in vectorial space (Buneo,
Jarvis, Batista, & Andersen, 2002; Georgopoulos, Schwartz, & Kettner, 1986; Pouget, Ducom, Torri, &
Bavelier, 2002), based on a gaze-centered coordinate frame, mapping visual space onto motor space.
These representations are likely multisensory in nature, with coordinate frames sharing visual, kines-
thetic, and auditory modalities (Fiehler, Rosler, & Henriques, 2010; Henriques, Klier, Smith, Lowy, &
Crawford, 1998; Kagerer & Contreras-Vidal, 2009; Pouget et al., 2002). Planning and execution of limb
movements usually involves visuo-kinesthetic information, such as coding of initial hand position, and
of the evolving state of the effector. Previous research has proposed that both (hypothetical) visual and
proprioceptive movement vectors are likely fused at their origin (Rossetti, Desmurget, & Prablanc,
1995; Yan, Thomas, Stelmach, & Thomas, 2000), providing us with an integrated and optimal estimate
of where the end effector is in space (van Beers, Wolpert, & Haggard, 2002). At the same time, the two
sensory inputs are weighted depending on task demands, such that in the absence of vision the system
up-weights sensory input from kinesthesia in order to optimize movement control processes and
enabling us to reach toward targets without vision of the effector (Fiehler et al., 2010; Henriques
et al., 1998; Rossetti et al., 1995).

Previous research has examined sensorimotor integration in young to middle-aged adults where it
is reasonable to assume that mechanisms pertaining to sensorimotor integration, and the resulting
formation of internal models, are relatively stable. This is not true for children whose motor perfor-
mance is generally less accurate and more variable than adults (Contreras-Vidal, Bo, Boudreau, &
Clark, 2005; Yan et al., 2000), and improves as a function of age. This has been shown not only for visu-
ally guided drawing tasks (Contreras-Vidal et al., 2005; Ferrel-Chapus, Hay, Olivier, Bard, & Fleury,
2002), but also for force adaptation (Konczak, Jansen-Osmann, & Kalveram, 2003), or postural tasks
in infants (Chen, Metcalfe, Jeka, & Clark, 2007). One possible explanation for this higher variability
in children is that sensorimotor internal models in children are not yet as well ‘tuned’ as they are
in adults; this might be due to increased noise in the sensory and motor systems, or to increased noise
in the integration process itself, or to a combination of these factors. The first option, that internal
models can be expected to become less accurate when the unimodal input itself is not well defined,
is supported by a recent study in 7-13 year old children, testing the accuracy of the unimodal esti-
mates of vision and proprioception. Using a localization task, the study showed that proprioceptive-
based estimates become increasingly more reliable in older children (King, Pangelinan, Kagerer, &
Clark, 2010; Pickett & Konczak, 2009); as a result, younger children up-weight visual information,
whereas older children up-weight proprioceptive input when task demands require this. An earlier
study in 5-11 year old children using a localization task in connection with a tendon vibration pertur-
bation (Hay, Bard, Ferrel, Olivier, & Fleury, 2005) showed an interesting pattern of movement ampli-
tude accuracy: constant amplitude errors showed a U-shaped function of age, with the highest
accuracy at 5 and 11 years of age, and lower accuracy at 7 and 9 years. The authors attributed the low-
er spatial error in the young children to their successful use of feedforward control, and that of the
older children to their increased integration of proprioceptive feedback processes, whereas the youn-
ger children were more dependent on visual feedback processes. Variability of the amplitude error
showed a linear decrease with age, speaking to the generally higher noise in the developing motor sys-
tem of young children.

Using a kinesthetically-guided center-out reaching task in 6-10 year old children, Contreras-Vidal
showed that the 6-year-olds performed with larger endpoint errors when they had to rely on kines-
thetic feedback than the 10-year-old children, suggesting a less well defined kinesthetic-motor inter-
nal representation in the younger than in the older children or the adults, affecting predominantly
movement execution (Contreras-Vidal, 2006; van Beers et al., 2002). Overall, these findings indicate
that the acuity of proprioceptive or kinesthetic estimates, and their integration with other modalities
increases with age (Bo, Contreras-Vidal, Kagerer, & Clark, 2006; Smits-Engelsman & Duysens, 2008;
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