
Review

The trees and the forest: Characterization of complex brain networks
with minimum spanning trees

C.J. Stam a,⁎, P. Tewarie a, E. Van Dellen a,b, E.C.W. van Straaten a, A. Hillebrand a, P. Van Mieghem c

a Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
b Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
c Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, PO Box 5031, 2600 GA, Delft, The Netherlands

a b s t r a c ta r t i c l e i n f o

Article history:
Received 27 February 2014
Received in revised form 30 March 2014
Accepted 1 April 2014
Available online 13 April 2014

Keywords:
Brain networks
Graph theory
Minimum spanning tree
Functional connectivity
EEG
MEG

In recent years there has been a shift in focus from the study of local, mostly task-related activation to the
exploration of the organization and functioning of large-scale structural and functional complex brain networks.
Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical
tools and models which allow a systematic interpretation of multivariate data obtained from structural and
functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple,
unbiased method to represent the essential features of brain networks, and to compare these across different
conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this prob-
lem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects
all nodes andmaximizes a property of interest such as synchronization between brain areas.We explain how the
global and local properties of an MST can be characterized. We then review early and more recent applications
of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and
Parkinson's disease, and show how MST characterization performs compared to more conventional graph
analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a
space of all possible tree configurations and discuss how this may simplify the construction of simple generative
models of normal and abnormal brain network organization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction: modern brain network analysis

In the history of neuroscience two concepts for understanding the
function of the brain have played a major role. The first idea is that the
brain consists of many different parts or components and that each of
these subdivisions is likely to be responsible for a very specific function.
One example of this approach is the work by Franz Joseph Gall, who
assigned very specific functions to different regions of the cortex
based upon measurements of the overlying skull. This concept of
“phrenology” was heavily criticized, but later studies based upon the
correlation between brain lesions and cognitive deficits gave a more
scientific basis to the notion of functional localization in the brain. In
particular, Broca and Wernicke identified brain regions responsible for
motor and sensory aspects of language, and Penfield confirmed with
intraoperative stimulation experiments a highly specific topographic

cortical representation of motor and sensory functions. To a large
extent, modern brain imaging studies have been directed at localizing
different cognitive functions by identifying the specific brain regions
activated during cognitive tasks.

The second idea emphasizes the unitary, integrated nature of brain
function, and assumes that higher cognitive functions cannot be mean-
ingfully assigned to any specific part of the brain. This approach is
reflected by the criticisms by Flourens on the phrenological work by
Gall. Karl Lashley proposed a holistic view of brain function based
upon his discovery that memory failure in animal experiments
depended on the amount of tissue removed rather than on damage to
any specific area. Somewhat similar holistic ideas about brain function
were advocated by Karl Pribram. Donald Hebb proposed that the
elementary functional units of the central nervous system are cell
assemblies. Attempts at strict localization of brain function have been
criticized by Uttal, who referred to this type ofwork as “neophrenology”
(Uttal, 2001).

In recent years the controversy between strict localization and
holistic views of brain function has resulted in attempts to integrate
both aspects in a single framework. Many neuroscientists now think
of the brain as a complex network which reflects an optimal balance
between “segregation” and “integration” (Sporns, 2013). In addition, it

International Journal of Psychophysiology 92 (2014) 129–138

⁎ Corresponding author at: Department of Clinical Neurophysiology andMEGCenter, VU
University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
Tel.: +31 20 4440727.

E-mail addresses: CJ.Stam@VUmc.nl (C.J. Stam), P.F.A.VanMieghem@tudelft.nl
(P. Van Mieghem).

http://dx.doi.org/10.1016/j.ijpsycho.2014.04.001
0167-8760/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

International Journal of Psychophysiology

j ourna l homepage: www.e lsev ie r .com/ locate / i jpsycho

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpsycho.2014.04.001&domain=pdf
http://dx.doi.org/10.1016/j.ijpsycho.2014.04.001
mailto:CJ.Stam@VUmc.nl
mailto:P.F.A.VanMieghem@tudelft.nl
http://dx.doi.org/10.1016/j.ijpsycho.2014.04.001
http://www.sciencedirect.com/science/journal/01678760


has become clear that the complex architecture of brain networks can
be studied successfully even in a no-task resting-state (Gusnard et al.,
2001). This has led to an increased interest in the study of resting-
state functional or effective connectivity, especiallywith fMRI. However,
the complexity of the data obtained in such studies poses newproblems
for proper analysis and understanding.

An important breakthrough was achieved when graph theory was
applied to neuroscience data. Graph theory is a branch of mathematics
that describes networks at the most elementary level, as sets of nodes
(“vertices”) and links (“edges”). Graph theory originated when Euler
solved the seven bridge problem of Konigsberg in 1736. Initially,
graph theory was mainly used to study relatively small, deterministic
networks as a branch of combinatorics. This situation changed and
extended to stochastic networks, when social scientists became inter-
ested in the study of large networks, and Erdős and Rényi developed
the mathematical theory of random networks (Erdős and Rényi,
1960). The latest decisive development was the introduction of the
“small-world network” by Watts and Strogatz (Watts and Strogatz,
1998) and the “scale-free network” by Barabasi and Albert (Barabasi
and Albert, 1999), which initiated the new field of “network science”,
the theory of complex networks. The small-world network is a simple
model that combines both local connectedness (segregation) and global
integration. The scale-free network is a model of a growing network,
where a new node connects to existing nodes with probability
proportional to their degree. This type of growth, called preferential
attachment, results in a scale-free degree distribution, where the prob-
ability that a randomly chosen nodal degree D equals k, is a power-law
in k, Pr[D = k] = c k−γ, where c is a normalization constant and the
power exponent γ = 3 (in Barabasi–Albert graphs). Importantly, such
networks have a relatively large number of highly connected nodes or
hubs. The introduction of small-world and scale-free models gave rise
to an explosive growth of modern network studies in a large range of
fields, ranging from molecular and genetic networks all the way up to
economic and social systems (Estrada, 2011; Van Mieghem, 2014).

Modern network theory has been applied to the study of the brain as
well. Both structural and functional networks have been studied in a
range of organisms, from Caenorhabditis elegans to macaque, cat and
human, during development and in health and disease (Bullmore and
Sporns, 2009, 2012; Stam, 2010; Stam and van Straaten, 2012; van
den Heuvel and Hulshoff Pol, 2010; van Straaten and Stam, 2013).
Several important conclusions that have emerged from this rapidly
growing field are the following. First, all studies have confirmed that
both structural as well as functional brain networks display the typical
features of a small-world network. A high level of clustering (connect-
edness of the neighbours of a node) is combined with a short average
shortest path length (number of links in the shortest path from one
node to another node). Second, the degree distribution of brain
networks is approximately scale-free, which reflects the presence of a
large number of highly connected nodes or hubs. Third, these hubs are
preferentially connected to each other, forming a so-called “rich club”
(van den Heuvel and Sporns, 2011). Fourth, brain networks display a
hierarchical modular structure (Alexander-Bloch et al., 2010). Each
module is a subnetwork that consists of nodes that are strongly
connected to each other, but only weakly to nodes outside the module.
Hierarchy is reflected by that fact thatmodules can often be divided into
submodules, and these again into sub-submodules over several levels.
Importantly, modules typically correspond to functional systems of
the brain. Finally, brain networks display the property of mixing or
degree correlations. At the macroscopic level high degree nodes are
preferentially attached to other high degree nodes, and low degree
nodes to other low degree nodes (assortative mixing). There is some
evidence that mixing at the neuronal level is disassortative (Bettencourt
et al., 2007). The rich club is a high-degree subgraph with high
assortativity.

The topological properties of structural and functional brain
networks discovered by modern network science are relevant for

understanding the development, normal functioning and pathology of
the brain. During normal development the topology changes from
random to a more small-world-like organization, and this process is
strongly related to genetic factors (Boersma et al., 2011; Schutte et al.,
2013; Smit et al., 2008). Brain network organization is different in
males and females, possibly due to the influence of sex hormones on
brain development (Douw et al., 2011; Gong et al., 2009b). Brain net-
work organization is also related to cognitive performance. In particular,
short average path length has been associated with higher intelligence
(Li et al., 2009; van den Heuvel et al., 2009). Functional brain networks
may also change during the performance of cognitive tasks, during sleep
and in coma (Crossley et al., 2013; Uehara et al., 2013). The optimal
architecture of structural brain networks becomes disrupted in various
neurological and psychiatric disorders. Abnormalities have been
reported in Alzheimer's disease, frontal lobe dementia, Parkinson's
disease, multiple sclerosis, brain tumours, epilepsy, schizophrenia,
depression, autism and ADHD (Bassett and Bullmore, 2009; Stam and
van Straaten, 2012). In several of these studies, network changes corre-
lated with cognitive deficits and disease severity.

However, in several cases there is considerable controversy
concerning the nature of the network changes. In a recent review of
graph theoretical studies in Alzheimer's disease, Tijms et al. (2013)
showed that different studies have reported either an increase or a
decrease of the clustering coefficient or the path length. Only the loss
of important hub nodes, especially in the posterior part of the default
mode network, seems to be a consistent finding across studies. Similar
controversies can be found for epilepsy (Kramer and Cash, 2012; van
Diessen et al., 2013). While most studies agree that functional brain
networks become more regular (higher clustering and longer path
length) during seizures, in the interictal state both increased random-
ness (reflected by a lower clustering coefficient and shorter path length)
as well as increased regularity have been reported (Kramer and Cash,
2012; van Diessen et al., 2013). With respect to the significance of
hubs in epilepsy there is more agreement: several studies suggest that
pathological hubs are more prevalent in epilepsy and that the removal
of these hub nodes is associated with a more favourable outcome of
epilepsy surgery (Ortega et al., 2008; van Diessen et al., 2013; Wilke
et al., 2011). The application of modern network theory to brain neuro-
science has thus improved our understanding of the development and
organization of brain networks and their relation to cognition. At the
same time these studies have shown conflicting results, in particular
in the case of brain disease. At least some of these problems may be
due to methodological issues. We will first discuss some of these meth-
odological factors in Section 2 and then propose theminimum spanning
tree as a possible solution in Section 3.

2. Problems with network comparison

To understand the influence of methodological issues on the out-
come of a graph theoretical analysis we will first discuss an example
in some detail. The basic steps are shown schematically in Fig. 1.
Supposewe have a resting-state EEG orMEG recordingwithN channels.
From this recordingwe select a number of artefact-free epochs. The data
are filtered in a frequency band of interest, and subsequently the
correlations between all possible pairs of EEG time series are deter-
mined with a suitable measure of functional or effective connectivity.
The results can be averaged over all epochs and represented in a single
N×Nmatrix,where each element contains the strength of synchroniza-
tion between a pair of channels. We can do a graph theoretical analysis
of this matrix in two different ways.

The first option is to consider a threshold T. The nodes in the graph
correspond to the EEG channels. Two nodes are connected in the
graph if the synchronization strength between the corresponding EEG
time series exceeds the threshold T; otherwise they are not connected.
This procedure results in a binary graph, where connections (edges)
either exist or do not exist; no weights are assigned to the edges. If
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