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a b s t r a c t

Linear mixed-effects models (LMEMs) have become increasingly prominent in psycholin-
guistics and related areas. However, many researchers do not seem to appreciate how ran-
dom effects structures affect the generalizability of an analysis. Here, we argue that
researchers using LMEMs for confirmatory hypothesis testing should minimally adhere
to the standards that have been in place for many decades. Through theoretical arguments
and Monte Carlo simulation, we show that LMEMs generalize best when they include the
maximal random effects structure justified by the design. The generalization performance of
LMEMs including data-driven random effects structures strongly depends upon modeling
criteria and sample size, yielding reasonable results on moderately-sized samples when
conservative criteria are used, but with little or no power advantage over maximal models.
Finally, random-intercepts-only LMEMs used on within-subjects and/or within-items data
from populations where subjects and/or items vary in their sensitivity to experimental
manipulations always generalize worse than separate F1 and F2 tests, and in many cases,
even worse than F1 alone. Maximal LMEMs should be the ‘gold standard’ for confirmatory
hypothesis testing in psycholinguistics and beyond.

� 2012 Elsevier Inc. All rights reserved.

‘‘I see no real alternative, in most confirmatory studies, to
having a single main question—in which a question is
specified by ALL of design, collection, monitoring, AND
ANALYSIS.’’

Tukey (1980), ‘‘We Need Both Exploratory and Confir-
matory’’ (p. 24, emphasis in original).

Introduction

The notion of independent evidence plays no less impor-
tant a role in the assessment of scientific hypotheses than

it does in everyday reasoning. Consider a pet-food manu-
facturer determining which of two new gourmet cat-food
recipes to bring to market. The manufacturer has every
interest in choosing the recipe that the average cat will
eat the most of. Thus every day for a month (28 days) their
expert, Dr. Nyan, feeds one recipe to a cat in the morning
and the other recipe to a cat in the evening, counterbalanc-
ing which recipe is fed when and carefully measuring how
much was eaten at each meal. At the end of the month Dr.
Nyan calculates that recipes 1 and 2 were consumed to the
tune of 92.9 ± 5.6 and 107.2 ± 6.1 (means ± SDs) grams per
meal respectively. How confident can we be that recipe 2 is
the better choice to bring to market? Without further
information you might hazard the guess ‘‘somewhat confi-
dent’’, considering that one of the first statistical hypothe-
sis tests typically taught, the unpaired t-test, gives p = 0.09
against the null hypothesis that choice of recipe does not
matter. But now we tell you that only seven cats partici-
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pated in this test, one for each day of the week. How does
this change your confidence in the superiority of recipe 2?

Let us first take a moment to consider precisely what it
is about this new information that might drive us to
change our analysis. The unpaired t-test is based on the
assumption that all observations are conditionally indepen-
dent of one another given the true underlying means of the
two populations—here, the average amount a cat would
consume of each recipe in a single meal. Since no two cats
are likely to have identical dietary proclivities, multiple
measurements from the same cat would violate this
assumption. The correct characterization becomes that all
observations are conditionally independent of one another
given (a) the true palatability effect of recipe 1 versus rec-
ipe 2, together with (b) the dietary proclivities of each cat.
This weaker conditional independence is a double-edged
sword. On the one hand, it means that we have tested
effectively fewer individuals than our 56 raw data points
suggest, and this should weaken our confidence in general-
izing the superiority of recipe 2 to the entire cat popula-
tion. On the other hand, the fact that we have made
multiple measurements for each cat holds out the prospect
of factoring out each cat’s idiosyncratic dietary proclivities
as part of the analysis, and thereby improving the signal-
to-noise ratio for inferences regarding each recipe’s overall
appeal. How we specify these idiosyncrasies can dramati-
cally affect our conclusions. For example, we know that
some cats have higher metabolisms and will tend to eat
more at every meal than other cats. But we also know that
each creature has its own palate, and even if the recipes
were of similar overall quality, a given cat might happen
to like one recipe more than the other. Indeed, accounting
for idiosyncratic recipe preferences for each cat might lead
to even weaker evidence for the superiority of recipe 2.

Situations such as these, where individual observations
cluster together via association with a smaller set of enti-
ties, are ubiquitous in psycholinguistics and related
fields—where the clusters are typically human participants
and stimulus materials (i.e., items). Similar clustered-
observation situations arise in other sciences, such as agri-
culture (plots in a field) and sociology (students in class-
rooms in schools in school-districts); hence accounting
for the RANDOM EFFECTS of these entities has been an impor-
tant part of the workhorse statistical analysis technique,
the ANALYSIS OF VARIANCE, under the name MIXED-MODEL ANOVA,
since the first half of the 20th century (Fisher, 1925; Sche-
ffe, 1959). In experimental psychology, the prevailing stan-
dard for a long time has been to assume that individual
participants may have idiosyncratic sensitivities to any
experimental manipulation that may have an overall ef-
fect, so detecting a ‘‘fixed effect’’ of some manipulation
must be done under the assumption of corresponding par-
ticipant random effects for that manipulation as well. In
our pet-food example, if there is a true effect of recipe—
that is, if on average a new, previously unstudied cat will
on average eat more of recipe 2 than of recipe 1—it should
be detectable above and beyond the noise introduced by
cat-specific recipe preferences, provided we have enough
data. Technically speaking, the fixed effect is tested against
an error term that captures the variability of the effect
across individuals.

Standard practices for data-analysis in psycholinguis-
tics and related areas fundamentally changed, however,
after Clark (1973). In a nutshell, Clark (1973) argued that
linguistic materials, just like experimental participants,
have idiosyncrasies that need to be accounted for. Because
in a typical psycholinguistic experiment, there are multiple
observations for the same item (e.g., a given word or sen-
tence), these idiosyncrasies break the conditional indepen-
dence assumptions underlying mixed-model ANOVA,
which treats experimental participant as the only random
effect. Clark proposed the quasi-F (F0) and min-F0 statistics
as approximations to an F-ratio whose distributional
assumptions are satisfied even under what in contempo-
rary parlance is called CROSSED random effects of participant
and item (Baayen, Davidson, & Bates, 2008). Clark’s paper
helped drive the field toward a standard demanding evi-
dence that experimental results generalized beyond the
specific linguistic materials used—in other words, the so-
called by-subjects F1 mixed-model ANOVA was not en-
ough. There was even a time where reporting of the min-
F0 statistic was made a standard for publication in the Jour-
nal of Memory and Language. However, acknowledging the
widespread belief that min-F0 is unduly conservative (see,
e.g., Forster & Dickinson, 1976), significance of min-F0

was never made a requirement for acceptance of a publica-
tion. Instead, the ‘normal’ convention continued to be that
a result is considered likely to generalize if it passes
p < 0.05 significance in both by-subjects (F1) and by-items
(F2) ANOVAs. In the literature this criterion is called F1 � F2

(e.g., Forster & Dickinson, 1976), which in this paper we
use to denote the larger (less significant) of the two p val-
ues derived from F1 and F2 analyses.

Linear mixed-effects models (LMEMs)

Since Clark (1973), the biggest change in data analysis
practices has been the introduction of methods for simulta-
neously modeling crossed participant and item effects in a
single analysis, in what is variously called ‘‘hierarchical
regression’’, ‘‘multi-level regression’’, or simply ‘‘mixed-ef-
fects models’’ (Baayen, 2008; Baayen et al., 2008; Gelman &
Hill, 2007; Goldstein, 1995; Kliegl, 2007; Locker, Hoffman,
& Bovaird, 2007; Pinheiro & Bates, 2000; Quené & van den
Bergh, 2008; Snijders & Bosker, 1999b).1 In this paper we refer
to models of this class as mixed-effects models; when fixed ef-
fects, random effects, and trial-level noise contribute linearly
to the dependent variable, and random effects and trial-level
error are both normally distributed and independent for differ-
ing clusters or trials, it is a linear mixed-effects model (LMEM).

The ability of LMEMs to simultaneously handle crossed
random effects, in addition to a number of other advanta-
ges (such as better handling of categorical data; see Dixon,
2008; Jaeger, 2008), has given them considerable momen-

1 Despite the ‘‘mixed-effects models’’ nomenclature, traditional ANOVA
approaches used in psycholinguistics have always used ‘‘mixed effects’’ in
the sense of simultaneously estimating both fixed- and random-effects
components of such a model. What is new about mixed effects models is
their explicit estimation of the random-effects covariance matrix, which
leads to considerably greater flexibility of application, including, as clearly
indicated by the title of Baayen et al. (2008), the ability to handle the
crossing of two or more types of random effects in a single analysis.
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