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Abstract

This paper provides an introduction to mixed-effects models for the analysis of repeated measurement data with sub-
jects and items as crossed random effects. A worked-out example of how to use recent software for mixed-effects mod-
eling is provided. Simulation studies illustrate the advantages offered by mixed-effects analyses compared to traditional
analyses based on quasi-F tests, by-subjects analyses, combined by-subjects and by-items analyses, and random regres-
sion. Applications and possibilities across a range of domains of inquiry are discussed.
� 2007 Elsevier Inc. All rights reserved.
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Psycholinguists and other cognitive psychologists use
convenience samples for their experiments, often based
on participants within the local university community.
When analyzing the data from these experiments, partic-
ipants are treated as random variables, because the
interest of most studies is not about experimental effects
present only in the individuals who participated in the
experiment, but rather in effects present in language
users everywhere, either within the language studied,
or human language users in general. The differences
between individuals due to genetic, developmental, envi-
ronmental, social, political, or chance factors are mod-
eled jointly by means of a participant random effect.

A similar logic applies to linguistic materials. Psych-
olinguists construct materials for the tasks that they
employ by a variety of means, but most importantly,
most materials in a single experiment do not exhaust
all possible syllables, words, or sentences that could be
found in a given language, and most choices of language
to investigate do not exhaust the possible languages that
an experimenter could investigate. In fact, two core prin-
ciples of the structure of language, the arbitrary (and
hence statistical) association between sound and mean-
ing and the unbounded combination of finite lexical
items, guarantee that a great many language materials
must be a sample, rather than an exhaustive list. The
space of possible words, and the space of possible sen-
tences, is simply too large to be modeled by any other
means. Just as we model human participants as random
variables, we have to model factors characterizing their
speech as random variables as well.
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Clark (1973) illuminated this issue, sparked by the
work of Coleman (1964), by showing how language
researchers might generalize their results to the larger
population of linguistic materials from which they sam-
ple by testing for statistical significance of experimental
contrasts with participants and items analyses. Clark’s
oft-cited paper presented a technical solution to this
modeling problem, based on statistical theory and com-
putational methods available at the time (e.g., Winer,
1971). This solution involved computing a quasi-F sta-
tistic which, in the simplest-to-use form, could be
approximated by the use of a combined minimum-F sta-
tistic derived from separate participants (F1) and items
(F2) analyses. In the 30+ years since, statistical tech-
niques have expanded the space of possible solutions
to this problem, but these techniques have not yet been
applied widely in the field of language and memory stud-
ies. The present paper discusses an alternative known as
a mixed effects model approach, based on maximum
likelihood methods that are now in common use in
many areas of science, medicine, and engineering (see,
e.g., Faraway, 2006; Fielding & Goldstein, 2006; Gil-
mour, Thompson, & Cullis, 1995; Goldstein, 1995; Pin-
heiro & Bates, 2000; Snijders & Bosker, 1999).

Software for mixed-effects models is now widely
available, in specialized commercial packages such as
MLwiN (MLwiN, 2007) and ASReml (Gilmour, Gogel,
Cullis, Welham, & Thompson, 2002), in general com-
mercial packages such as SAS and SPSS (the’mixed’ proce-
dures), and in the open source statistical programming
environment R (Bates, 2007). West, Welch, and Gałlech-
ki (2007) provide a guide to mixed models for five differ-
ent software packages.

In this paper, we introduce a relatively recent devel-
opment in computational statistics, namely, the possibil-
ity to include subjects and items as crossed, independent,
random effects, as opposed to hierarchical or multilevel
models in which random effects are assumed to be
nested. This distinction is sometimes absent in general
treatments of these models, which tend to focus on
nested models. The recent textbook by West et al.
(2007), for instance, does not discuss models with
crossed random effects, although it clearly distinguishes
between nested and crossed random effects, and advises
the reader to make use of the lmer() function in R, the
software (developed by the third author) that we intro-
duce in the present study, for the analysis of crossed
data.

Traditional approaches to random effects modeling
suffer multiple drawbacks which can be eliminated by
adopting mixed effect linear models. These drawbacks
include (a) deficiencies in statistical power related to
the problems posed by repeated observations, (b) the
lack of a flexible method of dealing with missing data,
(c) disparate methods for treating continuous and cate-
gorical responses, as well as (d) unprincipled methods

of modeling heteroskedasticity and non-spherical
error variance (for either participants or items). Meth-
ods for estimating linear mixed effect models have
addressed each of these concerns, and offer a better
approach than univariate ANOVA or ordinary least
squares regression.

In what follows, we first introduce the concepts and
formalism of mixed effects modeling.

Mixed effects model concepts and formalism

The concepts involved in a linear mixed effects model
will be introduced by tracing the data analysis path of a
simple example. Assume an example data set with three
participants s1, s2 and s3 who each saw three items w1,
w2, w3 in a priming lexical decision task under both
short and long SOA conditions. The design, the RTs
and their constituent fixed and random effects compo-
nents are shown in Table 1.

This table is divided into three sections. The left-
most section lists subjects, items, the two levels of
the SOA factor, and the reaction times for each com-
bination of subject, item and SOA. This section repre-
sents the data available to the analyst. The remaining
sections of the table list the effects of SOA and the
properties of the subjects and items that underly the
RTs. Of these remaining sections, the middle section
lists the fixed effects: the intercept (which is the same
for all observations) and the effect of SOA (a 19 ms
processing advantage for the short SOA condition).
The right section of the table lists the random effects
in the model. The first column in this section lists
by-item adjustments to the intercept, and the second
column lists by-subject adjustments to the intercept.
The third column lists by-subject adjustments to the
effect of SOA. For instance, for the first subject the
effect of a short SOA is attenuated by 11 ms. The final
column lists the by-observation noise. Note that in
this example we did not include by-item adjustments
to SOA, even though we could have done so. In the
terminology of mixed effects modeling, this data set
is characterized by random intercepts for both subject
and item, and by by-subject random slopes (but no
by-item random slopes) for SOA.

Formally, this dataset is summarized in (1).

yij ¼ Xijbþ Sisi þWjwj þ �ij ð1Þ

The vector yij represents the responses of subject i to
item j. In the present example, each of the vectors yij

comprises two response latencies, one for the short
and one for the long SOA. In (1), Xij is the design ma-
trix, consisting of an initial column of ones and followed
by columns representing factor contrasts and covariates.
For the present example, the design matrix for each sub-
ject-item combination has the simple form

R.H. Baayen et al. / Journal of Memory and Language 59 (2008) 390–412 391



Download English Version:

https://daneshyari.com/en/article/932322

Download Persian Version:

https://daneshyari.com/article/932322

Daneshyari.com

https://daneshyari.com/en/article/932322
https://daneshyari.com/article/932322
https://daneshyari.com

