

UROLOGIC ONCOLOGY

Urologic Oncology: Seminars and Original Investigations 23 (2005) 275-279

## Seminar article Bladder cancer clinical trials

Seth P. Lerner, M.D.\*

Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA

#### Abstract

The urologic oncology community recognizes the importance of bladder cancer as a significant public health problem. As the fourth most common malignancy diagnosed in U.S. men and the ninth most common in women, bladder cancer is a highly prevalent cancer with an estimated 5-year prevalence of 490,000 patients in the U.S. (2001) and over 1,000,000 worldwide (2004). Bladder cancer is the most expensive cancer to diagnose and treat. Important clinical questions abound and there are a growing number of both NIH and industry funded clinical trials attempting to answer these questions. The EORTC has played a critical role in conducting phase II and large phase III randomized trials addressing critical questions in the management of non-muscle invasive and invasive bladder cancer. The present article reviews this important area of clinical trials research. © 2005 Elsevier Inc. All rights reserved.

Keywords: Bladder cancer; Clinical trials; Chemoprevention; Intravesical therapy; Chemotherapy; Immunotherapy

#### 1. Introduction

There are many important questions being addressed in clinical trials for bladder cancer, ranging from detection and prevention to novel treatments strategies for both nonmuscle invasive and invasive bladder cancer. Many institutions are investigating new chemotherapy agents, new combinations and sequencing of chemotherapy drugs, and the field of targeted therapy is emerging as an important area of research as well.

This review focuses on cooperative group and other multicenter trials that are recently completed, ongoing, or proposed with plans to open soon (Table 1). Please refer to individual cooperative group Web sites and the National Cancer Institute (NCI) Web site for other trials for additional information (Table 2). Several trials are open at Memorial Sloan Kettering and MD Anderson Cancer Centers, and information is available on their Web sites as well.

#### 2. Detection

The field of voided urine biomarkers for detection of bladder cancer continues to develop. The Food and Drug Administration have now approved 2 cell-based assays for use as an adjunct to cystoscopy. The group at Johns Hopkins has revived the clinical testing of microsatellite polymorphism analysis. A new high-throughput assay has been developed by Cangen International (Irvine, CA) using 15 microsatellite markers, and this prospective clinical trial will determine the sensitivity and specificity for detection of bladder cancer compared to cystoscopy and cytology, and which of the markers are most predictive [1]. The study is enrolling 3 groups of patients: healthy controls (100), nongenitourinary cancer controls requiring cystoscopy (100), and new or recurrent Ta, T1 grade 1-3 transitional cell carcinoma (TCC) (300). Biomarkers will be obtained at baseline and every 3 months for 24 months. The study is the first in bladder cancer funded by the Early Detection Research Network and is being conducted at 11 sites in the United States. A multicenter trial of BLCA-4, which detects a bladder cancer specific nuclear matrix protein, is near completion, pending identification of a new sponsor.

PhotoCure ASA (Oslo, Norway) is sponsoring a follow-up US trial of 5-hexyl aminolevulinate (Hexvix<sup>®</sup>) and florescence cystoscopy for detection of occult papillary and carcinoma in situ (CIS) lesions. Studies conducted in Europe and results of the first US study were reported at the 2004 American Urological Association meeting. These results suggest that up to 26% of patients have occult papillary tumors, and the combination of standard and florescence cystoscopy detected 100% of CIS lesions, which if detected and eradicated, may lead to a lowering of the early and late recurrence rates. The current study was designed after ex-

<sup>\*</sup> Corresponding author. Tel.: +1-713-798-6841; fax: +1-713-798-5553.

E-mail address: slerner@bcm.tmc.edu (S.P. Lerner).

<sup>1078-1439/05/\$ –</sup> see front matter @ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.urolonc.2005.05.005

| Table 1     |          |        |    |         |        |
|-------------|----------|--------|----|---------|--------|
| High impact | clinical | trials | in | bladder | cancer |

| Detection         | Microsatellite polymorphism analysis                                           | Johns Hopkins/EDRN                  |  |
|-------------------|--------------------------------------------------------------------------------|-------------------------------------|--|
|                   | DLCA-4<br>5 have amingloweding to (Haveire <sup>®</sup> )                      | RhoteCure ASA multicenter           |  |
| Provention        | S-nexyl anniolevullilate (Hexvix)                                              | MDACC/NCL multicenter               |  |
| Prevention        | DEMO va placebo Ta C1,2                                                        | MDACC/NCI multicenter               |  |
|                   | Colosovit vs. placebo falloving $PCC_{(6, 1, 2)}$                              | MDACC/NCI/Dfgggr multicenter        |  |
|                   | Crean tag polyphonol $y_{0}$ arlotinih                                         | MDACC/NCI/Flizer indifficenter      |  |
|                   | Green tea poryphenor vs. enotinito                                             | Mayo Clinic                         |  |
| Local             | Perioperative single dose gemcitabine                                          | SWOG 0337                           |  |
|                   | Gemcitabine for BCG refractory patients                                        | SWOG 0353                           |  |
|                   | Full dose vs. 1/3 dose BCG and long vs. short-<br>term maintenance BCG(Ta, T1) | EORTC 30962                         |  |
|                   | Sequential MMC/BCG + maintenance vs.                                           | EORTC 30993                         |  |
|                   | Intravesical thermotherapy + MMC vs. BCG                                       |                                     |  |
|                   | BCG + maintenance                                                              |                                     |  |
|                   | BCG + interferon alpha 2b                                                      | O'Donnell/Schering                  |  |
|                   | BCG + maintenance vs. BCG/interferon                                           | Lamm/Schering                       |  |
|                   | BCG vs. epirubicin + $iFN\alpha 2b$ (T1G2,3)                                   | Steffan Lund/Scandinavia            |  |
|                   | Mycobacterial cell wall-DNA vs. BCG                                            | Morales/Bioniche Life Sciences Inc. |  |
| Advanced salvage  | Bladder salvage with neoadjuvant Carboplatin,<br>gemcitabine, paclitaxel       | SWOG 0219                           |  |
|                   | Bid XRT + CDDP/paclitaxcel - Bladder<br>preservation or cystectomy             | RTOG 99-06                          |  |
|                   | XRT/5-FU/CDDP vs. XRT/paclitaxel/CDDP +<br>adjuvant CDDP/gemcitabine           | RTOG 02-23                          |  |
| Advanced adjuvant | Phase III adjuvant M-VAC based on P53 status                                   | USC multi-center, SWOG, NCIC,       |  |
| ·                 | in organ-confined cancer                                                       | Europe                              |  |
|                   | Phase III adjuvant chemotherapy for P3, P4N0<br>or any N1–3                    | EORTC 30994/NCIC/ACOSOG             |  |
|                   | Phase III GC vs. dose dense                                                    | CALGB 90104/MSKCC/ECOG              |  |
|                   | paclitaxel/CDDP                                                                |                                     |  |
| Metastatic        | Phase III GC vs. GCT                                                           | EORTC 30987 Intergroup              |  |
|                   | Phase II gemcitabine/paclitaxel                                                | SWOG 0028                           |  |
|                   | Phase II irinotecan                                                            | SWOG 0306                           |  |
|                   | Phase II depsipeptide                                                          | SWOG 0400                           |  |
|                   | Phase II gemcitabine/cisplatin/Iressa                                          | CALGB 90102                         |  |
|                   | Ixabepilone phase II                                                           | ECOG 3800                           |  |
|                   | Pemetrexed/gemcitabine phase II                                                | ECOG 4802                           |  |
|                   | Vinflunine phase III/phase II                                                  | Bristol-Meyers Squibb               |  |
|                   | Herceptin + paclitaxel/carboplatin/gemcitabine                                 | Hussein/University of Michigan      |  |

Abbreviations: C = cisplatin; CDDP = cisplatin; G = gemicitabine; T = paclitaxel.

tensive consultation with the Food and Drug Administration, and could lead to approval of this novel detection strategy.

### 3. Chemoprevention

Primary (i.e., prevention of first occurrence of bladder cancer in at-risk patients) and secondary (i.e., prevention of recurrence of bladder cancer) chemoprevention is a rapidly growing field in urology as we learn more about bladder carcinogenesis and new therapeutic targets are identified. The long latency of bladder cancer and identification of biomarkers associated with earlier events create opportunities to test early detection strategies and interventions designed to reduce the risk of developing new or recurrent cancers.

Two trials have been completed in patients with new or recurrent Ta or T1 grade 1–2 tumors. The MD Anderson Cancer Center led a NCI funded clinical trial comparing fenretinide (Imaginis Corp., Greenville, SC), a potent inducer of apoptosis with activity in breast cancer and oral premalignant lesions, versus placebo treatment for 12 months in patients with Ta grade 1 and 2 tumors. This study was eventually combined with the Southwest Oncology Group (SWOG) study of fenretinide with modulation of G-actin as the primary endpoint in patients treated with bacille Calmette-Guérin (BCG). The MD Anderson Cancer Center study also evaluated retinoic acid receptor-beta, deoxyribonucleic acid (DNA) ploidy, fluorescence in situ hyDownload English Version:

# https://daneshyari.com/en/article/9341070

Download Persian Version:

https://daneshyari.com/article/9341070

Daneshyari.com