

Available online at www.sciencedirect.com

Experimental Eye Research 81 (2005) 503-512

EYE RESEARCH

EXPERIMENTAL

Review

Mouse mutants as models for congenital retinal disorders

Claudia Dalke*, Jochen Graw

GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany

Received 1 February 2005; accepted in revised form 1 June 2005 Available online 18 July 2005

Abstract

Animal models provide a valuable tool for investigating the genetic basis and the pathophysiology of human diseases, and to evaluate therapeutic treatments. To study congenital retinal disorders, mouse mutants have become the most important model organism. Here we review some mouse models, which are related to hereditary disorders (mostly congenital) including retinitis pigmentosa, Leber's congenital amaurosis, macular disorders and optic atrophy.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: animal model; retina; mouse; gene mutation; retinal degeneration

1. Introduction

Mice suffering from hereditary eye defects (and in particular from retinal degenerations) have been collected since decades (Keeler, 1924). They allow the study of molecular and histological development of retinal degenerations and to characterize the genetic basis underlying retinal dysfunction and degeneration. The recent progress of genomic approaches has added increasing numbers of such models.

In recent years systematic phenotype-driven approaches have been developed to screen for mice harboring chemically induced mutations, mainly by use of N-ethyl-N-nitrosourea (ENU), which predominantly causes point mutations (Justice et al., 1999). Moreover, many transgenic and knockout animal models were created to investigate the role of specific genes on retinal function. Finally, the genetrapping method was developed for the systematic generation of knockout mice (Skarnes et al., 2004). Although mouse models are a good tool to investigate retinal disorders, one should keep in mind that the mouse retina is somehow different from a human retina, particularly with respect to the number and distribution of the photoreceptor cells. The mouse as a nocturnal animal has a retina dominated by rods; in contrast, cones are small in size and represent only 3–5% of the photoreceptors. Mice do not form cone-rich areas like the human fovea. Instead of three cone pigments present in the human retina, mice express only two distinct pigments with absorption maxima near 350 and 510 nm (Lyubarsky et al., 1999).

In this review we discuss important mouse mutants for retinal degenerations (for cross information on their mutated genes and chromosomal localization see Table 1 and Fig. 1). Concerning the nomenclature of genes and mutations, we follow the mouse genetic nomenclature as outlined by the Jackson Laboratory (http://www.informatics.jax.org).

1.1. Retinal disorders including degeneration of photoreceptor cells

1.1.1. Models for retinitis pigmentosa (RP)

One of the first mouse mutants described in the field of vision research was the *rodless* mouse (*r*; Keeler, 1924), which carries a nonsense mutation in the *Pde6b* gene coding for the β -subunit of phosphodiesterase. The gene mutation was later discovered in the *retinal degeneration* mouse (actual gene symbol *Pde6b*^{rd1}, formerly referred to as *rd1* or *rd*; Pittler and Baehr, 1991). A viral insertion in intron 1 of the *Pde6b*^{rd1} allele (Bowes et al., 1993) coding for

Abbreviations BBS, Bardet-Biedl syndrome; ENU, N-ethyl-N-nitrosourea; ERG, electroretinogram; LCA, Leber's congenital amaurosis; RP, retinitis pigmentosa; RPE, retinal pigment epithelium; STGD, Stargardt's macular dystrophy.

^{*} Corresponding author. Dr Claudia Dalke, GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany.

E-mail address: dalke@gsf.de (C. Dalke).

Table 1
Overview of mutations in the mouse, affecting the structure or function of the retina. For allelic series just a few examples are listed

Gene Symbol	Chr. (cM)	Defect alleles	Mutation	Reference
Crb1 crumbs homolog 1 (Drosophila)	1 (73.0)	Crb1 ^{rd8}	1 bp deletion causing a frame shift and premature stop codon	Mehalow et al., 2003
		Crb1 ^{tm1Wij}	Knockout, insertion of a hygromycin resistance cassette the promoter region, exon 1 and part of intron 1	van de Pavert et al., 2004
Cnga3 cyclic nucleotide gated	1 cyto- band B	Cnga3 ^{tm1Biel}	Knockout, the gene was disrupted by replace- ment of exon 7 with a neomycin resistance	Biel et al., 1999
Vsx1 visual system homeobox 1 homolog (zebrafish)	2 (83.9)	Vsx1 ^{tm1Bhr}	Knockout, a neo cassette replacing the coding region for the entire homeodomain and CVC	Ohtoshi et al., 2004
		Vsx1 ^{tm1Mci}	Knockout, a genomic fragment, was replaced with a neomycin selection cassette inserted by homologous recombination	Chow et al., 2004
Abca4 ATP-binding cassette, sub-family A (ABC1) member 4	3 (61.8)	Abca4 ^{tm1Ght}	Knockout, replacement of a 4 kb genomic fragment containing the promoter and first exon with a neomycin cassette	Weng et al., 1999
Rpe65 retinal pigment epithelium 65	3 (87.6)	Rpe65 ^{tm1Tmr}	Knockout, exons 1–3 of the gene were replaced with a PGK-neo cassette	Redmond et al., 1998
		<i>Rpe65^{rd12}</i> (retinal degeneration 12)	Nonsense mutation, base substitution (C to T) in codon 44	Pang et al., 2005
Pde6b rod phospodiesterase, beta subunit (r,rodless; rd, retinal degeneration)	5 (57.0)	$P\overline{d}e6b^{rdl}$ (retinal degeneration 1)	Nonsense mutation, C-A transversion in codon 347 (exon 7)	Pittler and Baehr, 1991
		<i>Pde6b^{rd10}</i> (retinal degeneration 10)	Missense mutation in exon 13	Chang et al., 2002
		<i>Pde6b²³</i> 2 Jackson <i>Pde6b^{atrd2}</i> atypical	Point mutation in exon 16 ENU induced	Thaung et al., 2002
Mitf microphthalmia-associated transcription factor	6 (40.0)	<i>Mitf^{mi-sp}</i> microphthal- mia spotted	Insertion of an extra C residue in the poly- pyrimidine tract located upstream of an 18 bp alternative exon	Steingrimsson et al., 1994
		<i>Mitf^{mi-vit}</i> vitiligo <i>Mitf^{Mi-wh}</i> micro-	G to A transition at bp 793 that leads to an aspartate to asparagine substitution T to A transversion at bp 764, which leads to an	Steingrimsson et al., 1994 Steingrimsson
Rho rhodopsin	6 (51.5)	phthalmia white Rho ^{tm1Jlem}	isoleucine to asparagine substitution Knockout, a PGK-neo cassette was inserted into the first coding exon	et al., 1994 Lem et al., 1999
modopsin		Rho ^{tm1Phm}	Knockout, a neomycin cassette under the control of a polymerase II promoter was inserted at codon 135 in evon 2	Humphries et al., 1997
Crx cone-rod homeobox	7 (8.5)	Crx ^{tm1Clc}	Knockout, the homeodomain coding region containing exon 3 and a portion of exon 4 was	Furukawa et al., 1999
containing gene Tub tubby candidate cone	7 (51.4)	Tub ^{tub-rd5}	G to T transversion resulting in a larger	Noben-Trauth
imooy canalaale gene		Tub ^{tm1Rok}	Knockout, a neomycin cassette replaced 16 kb	Stubdal et al., 2000
Cln8 ceroid-lipofuscinosis, neuronal 8	8 (6.0)	Cln8 ^{mnd} (motor neur- on degeneration)	A single nucleotide insertion (267-268C, codon 90) predicts a frameshift and a truncated protein	Ranta et al., 1999
nr nervous Bbs2 Bardet-Biedl syndrome 2 homolog (human)	8 (8.0) 8 synte- nic	nr Bbs2 ^{tm1Vcs}	spontaneous Knockout, exons 5–13 were replaced with a neo	De Jager et al., 1998 Nishimura et al., 2004
Mfrp membrane-type frizzled-related protein	9 (25.5)	Mfrp ^{rd6}	4 bp deletion in the splice donor sequence of intron 4 - skipping of exon 4 (no frame shift)	Kameya et al., 2002
Bbs4 Bardet-Biedl syndrome 4 homolog (human)	9 (33.0)	Bbs4 ^{Gt1Nk}	A gene trap vector was inserted into intron 1, causing aberrant splicing	Kulaga et al., 2004
		Bbs4 ^{tm1Vcs}	Exons 6-11 were replaced with a neo cassette	Mykytyn et al., 2004 (continued on next page)

Download English Version:

https://daneshyari.com/en/article/9341829

Download Persian Version:

https://daneshyari.com/article/9341829

Daneshyari.com