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a b s t r a c t

The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having lower
COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val homozygotes.
Concordantly, Val/Val homozygotes tend to perform worse and display increased (interpreted as ineffi-
cient) frontal activation in certain cognitive tasks. In a sample of 209 participants, we test the hypothesis
that Met carriers will be advantaged in a decision-making task that demands sequencing exploratory and
exploitive choices to minimize uncertainty about the reward structure in the environment. Previous work
suggests that optimal performance depends on limited cognitive resources supported by prefrontal sys-
tems. If so, Met carriers should outperform Val/Val homozygotes, particularly under dual-task conditions
that tax limited cognitive resources. In accord with these a priori predictions, Met carriers were more
resilient in the face of cognitive load, continuing to explore in a sophisticated manner. We fit computa-
tional models that embody sophisticated reflective and simple reflexive strategies to further evaluate
participants’ exploration behavior. The Ideal Actor model reflectively updates beliefs and plans ahead,
taking into account the information gained by each choice and making choices that maximize
long-term payoffs. In contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive
account of choice, in which the values of actions are based only on the rewards experienced so far. Its
beliefs are updated reflexively in response to observed changes in rewards. Converging with standard
analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val homozygotes
were best characterized by the Naive RL model, particularly under dual-task conditions.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Effective decision-making requires a balance of exploratory and
exploitative behavior (Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Cohen, McClure, & Yu, 2007; Hills et al., 2015). For example,
consider the problem of choosing the best route to work. Routes
change over time because of construction, changes in traffic pat-
terns, etc. such that one cannot be certain which route is currently
best. In this non-stationary environment, one either chooses the
best-experienced route so far (i.e., exploit) or tries a route that
was inferior in the past but now may be superior (i.e., explore).
Which actions a commuter should take in a series of choices is a
non-trivial problem as optimal decision-making requires factoring
in uncertainty about the state of the environment. An actor who

excessively exploits will fail to notice when another action
becomes superior. Conversely, an actor who excessively explores
incurs an opportunity cost by frequently forgoing the high-payoff
option.

Our focus is on the timing of exploratory choices. People should
explore when they are uncertain about the state of the environ-
ment. Reflective belief-updates do this by incorporating predictions
about unobserved changes in the environment. For example, a
reflective belief-updater would increase their belief that an inferior
route has improved as more time passes since the last observation
because it becomes more likely that disruptive construction will
have completed. In contrast, a reflexive belief-updater is only
informed by direct observations of rewards and, therefore, does
not fully utilize environmental structure to update beliefs and
guide actions resulting in randomly timed exploratory choices.

This distinction closely echoes contemporary dual-system
Reinforcement Learning (RL) approaches in which a reflexive, com-
putationally parsimonious model-free controller competes for
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control of behavior with a reflective, model-based controller situ-
ated in prefrontal cortex (Daw, Niv, & Dayan, 2005). Previous work
on exploration and exploitation indicates that reflective choice is
resource intensive, perhaps relying on prefrontal systems (Badre,
Doll, Long, & Frank, 2012; Otto, Knox, Markman, & Love, 2014).
Correspondingly, populations that have reduced executive func-
tion, such as those experiencing depressive symptoms, are
impaired in reflective decision making (Blanco, Otto, Maddox,
Beevers, & Love, 2013), as are individuals under a secondary task
load that exhausts limited cognitive resources (Otto et al., 2014).

Here, we test the hypothesis that reflective exploration is medi-
ated by prefrontal systems by examining differences in the func-
tional Val158Met polymorphism within the COMT gene (rs4680).
The COMT gene modulates dopamine levels in prefrontal cortex
with Met allele carriers having lower COMT enzyme activity and,
therefore, higher dopamine levels, compared to Val/Val homozy-
gotes (Gogos et al., 1998; Yavich, Forsberg, Karayiorgou, Gogos, &
Mannisto, 2007; Kaenmaki et al., 2010). Val/Val homozygotes tend
to perform worse on executive tasks and display increased frontal
activation that may reflect inefficient processing compared to
Met-carriers (Blasi et al., 2005; Winterer et al., 2006; Tan et al.,
2007). Animal studies examining set-shifting behavior also indi-
cate the crucial role of PFC dopamine (Stefani & Moghaddam,
2006), which can be manipulated by COMT (Tunbridge,
Bannerman, Sharp, & Harrison, 2004). In humans, the COMT geno-
type predicts participants’ ability to adapt behavior on a
trial-by-trial basis (Frank, Moustafa, Haughey, Curran, &
Hutchison, 2007), has been associated with performance on rever-
sal learning tasks (Nolan, Bilder, Lachman, & Volavka, 2004), and
has been linked to uncertainty-based exploration (Frank, Doll,
Oas-Terpstra, & Moreno, 2009). But, the influence of the
Val158Met polymorphism on cognitive function is debated, with
some conflicting results. A recent meta-analysis concluded that
there was little or no association between COMT genotype and
scores on a set of standard cognitive tests (e.g. the Wisconsin
Card Sorting task), though a reliable association was found
between Met/Met genotype and higher IQ (Barnett, Scoriels, &
Munafò, 2008).

It may be that COMT genotype has a more specific or subtle
influence on cognition than is measured by many of the standard
behavioral tests. Here we directly assessed the role of COMT varia-
tion in an exploratory decision-making task. We use computational
models, related to reflective and reflexive exploration, to provide a
clearer picture of the behavioral data. The main prediction is that
Met carriers will explore reflectively, whereas Val/Val homozy-
gotes will rely on simpler reflexive strategies.

One possibility is that the additional dopamine available for
Met carriers functions more as a reserve rather than to facilitate
cognitive function in general. We predict that Met carriers will
be more resilient when cognitive resources are taxed under
dual-task load.

2. Materials and methods

We examined associations of COMT variants with exploratory
strategies by using a paradigm termed the ‘‘Leapfrog’’ task (Knox,
Otto, Stone, & Love, 2012), a variant of the ‘‘bandit’’ task (Sutton
& Barto, 1998) that is specifically designed to evaluate exploratory
behavior. In this task (Fig. 1), one of two options provides a higher
reward than the other. With a fixed probability on each trial, the
currently inferior option can increase in value, becoming the better
option. Because the relative superiority of the options switches
over time, participants must choose between exploiting the option
with the highest observed reward and exploring to see whether the
other option has surpassed it. This task is ideally suited to evaluate

the timing of exploratory choices and to what extent they are
guided by uncertainty in the environment, distinguishing reflective
from reflexive choice strategies.

To tax mechanisms that support reflective exploration, which
are thought to be resource intensive, participants in the dual-task
condition also performed a tone counting task. Dual-task manipu-
lations using tone counting are known to increase the prevalence
of reflexive exploration strategies (Otto et al., 2014). More gener-
ally, secondary tasks that exhaust working memory resources tend
to increase reliance on implicit strategies (Foerde, Knowlton, &
Poldrack, 2006; Zeithamova & Maddox, 2006) and cognitively inex-
pensive model-free choice strategies (Otto, Gershman, Markman, &
Daw, 2013; Gershman, Markman, & Otto, 2014).

2.1. Models evaluated

We fit computational models that embody reflective and reflex-
ive strategies to participants’ data to evaluate their exploration
behavior. The Ideal Actor model reflectively updates beliefs and
plans ahead, taking into account the information gained by each
choice and making choices that maximize long-term payoffs.
Action-values are a product of both expected rewards and the
potential to reduce uncertainty about the state of the environment.
In contrast, the Naïve RL model instantiates the reflexive account of
choice, in which the values of actions are based only on the
rewards experienced so far. Its beliefs are updated reflexively in
response to observed changes in rewards.

Both models incorporate a Softmax choice rule (Sutton & Barto,
1998), which chooses options as a function of the computed
action-values. The Softmax inverse temperature is a free parameter
in both models. Critically, the action-values used in the Softmax
choice rule differ between the two models, leading to qualitative
differences in exploratory behavior. The Naïve RL model explores
with equal probability on every trial, whereas the probability of

Fig. 1. The Leapfrog task: example choices over 100 trials. On any trial the lower
option might, with a probability of 0.075, increase its reward by 20 points,
surpassing the other option. The relative superiority of the two options alternates as
their reward values ‘‘leapfrog’’ over one another. The lines represent the true
reward values, the dots a participant’s choices.
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