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behavioral and electrophysiological data that address the functions of the hippocampus and particularly
its subregions. Based on the computational proposal that the dentate gyrus produces sparse represen-
tations by competitive learning and via the mossy fiber pathway forces new representations on the CA3
during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern

ﬁ?g‘;’gcrg;pus separation during learning. Based on the computational proposal that CA3-CA3 autoassociative networks
Episodic memory are important for episodic memory, it has been shown behaviorally that the CA3 supports spatial rapid
Recall one-trial learning, learning of arbitrary associations where space is a component, pattern completion,
Autoassociation spatial short-term memory, and spatial sequence learning by associations formed between successive
Cortical Backprojections items. The concept that the CA1 recodes information from CA3 and sets up associatively learned back-
CA3 projections to neocortex to allow subsequent retrieval of information to neocortex, is consistent with
CA1 findings on consolidation. Behaviorally, the CA1 is implicated in processing temporal information as
Dentate granule cells shown by investigations requiring temporal order pattern separation and associations across time; and

computationally this could involve associations in CA1 between object and timing information that have
their origins in the lateral and medial entorhinal cortex respectively. The perforant path input from the
entorhinal cortex to DG is implicated in learning, to CA3 in retrieval from CA3, and to CA1 in retrieval after
longer time intervals (“intermediate-term memory”) and in the temporal sequence memory for objects.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper a computational theory of hippocampal func-
tion developed by Rolls (1987, 1989a,b,c, 1996b, 2010b, 2013b,c),
Treves and Rolls (1992, 1994) and with other colleagues (Rolls and
Stringer, 2005; Rolls et al., 2002) is refined and further developed,
and tests of the theory based especially on subregion analyses of
the hippocampal system are described. The relation of this the-
ory to other computational approaches to hippocampal function is
described. This paper follows the general format of the earlier joint
paper by Rolls and Kesner (2006), but updates the theory and the
tests of the theory. The aims of this paper are thus to update a partic-
ular computational theory of hippocampal function (which remains
the only quantitative theory of hippocampal function in mem-
ory and its recall to the neocortex), and the predictions it makes
about the different hippocampal subregions (dentate gyrus, CA3
and CA1); and to update the empirical tests of these predictions by
especially subregion analysis of hippocampal function. The paper is
intended to provide an updated position or landmark description of
the theory, and how it has been tested, and this combination makes
this paper a unique contribution.

The theory was originally developed as described next, and was
preceded by work of Marr (1971) who developed a mathematical
model, which although not applied to particular networks within
the hippocampus and dealing with binary neurons and binary
synapses which utilized heavily the properties of the binomial dis-
tribution, was important in utilizing computational concepts.' The
model was assessed by Willshaw and Buckingham (1990). Early

1 Marr (1971) showed how a network with recurrent collaterals could complete a
memory using a partial retrieval cue, and how sparse representations could increase
the number of memories stored (see also Willshaw and Buckingham, 1990). The

work of Gardner-Medwin (1976) showed how progressive recall
could operate in a network of binary neurons with binary synapses.
Rolls (1987) described a theory of the hippocampus presented to
the Dahlem conference in 1985 on the Neural and Molecular Bases
of Learning in which the CA3 neurons operated as an autoasso-
ciation memory to store episodic memories including object and
place memories, and the dentate granule cells operated as a pre-
processing stage for this by performing pattern separation so that
the mossy fibers could act to set up different representations for
each memory to be stored in the CA3 cells.> He suggested that the
CA1 cells operate as a recoder for the information recalled from
the CA3 cells to a partial memory cue, so that the recalled informa-
tion would be represented more efficiently to enable recall, via the
backprojection synapses, of activity in the neocortical areas similar
to that which had been present during the original episode. This

analysis of these autoassociation or attractor networks was developed by Kohonen
(1997,1984) and Hopfield (1982), and the value of sparse representations was quan-
tified by Treves and Rolls (1991). Marr (1971) did not specify the functions of the
dentate granule cells vs the CA3 cells vs the CA1 cells (which were addressed in
the Rolls (1989a,b) papers and by Treves and Rolls (1992, 1994)), nor how retrieval
to the neocortex of hippocampal memories could be produced, for which a quan-
titative theory was developed by Treves and Rolls (1994). In addition, Treves and
Rolls (1994) and Rolls and Treves (1998) have argued that approaches to neuro-
computation which base their calculations on what would happen in the tail of an
exponential, Poisson, or binomial distribution are very fragile.

2 McNaughton and Morris (1987) at about the same time suggested that the CA3
network might be an autoassociation network, and that the mossy fiber to CA3 con-
nections might implement ‘detonator’ synapses. However, the concepts that the
diluted mossy fiber connectivity might implement selection of a new random set
of CA3 cells for each new memory, and that a direct perforant path input to CA3
was needed to initiate retrieval, were introduced by Treves and Rolls (1992). Con-
tributions by Levy (e.g. 1989); McNaughton (1991); Hasselmo; Lisman; McClelland
et al. (1995), and many others, are described below.
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