

Available online at www.sciencedirect.com

Molecular Brain Research 138 (2005) 94-103

MOLECULAR BRAIN RESEARCH

www.elsevier.com/locate/molbrainres

Chronic morphine acts via a protein kinase $C\gamma-G_{\beta}$ -adenylyl cyclase complex to augment phosphorylation of G_{β} and $G_{\beta\gamma}$ stimulatory adenylyl cyclase signaling

Research Report

Sumita Chakrabarti, Annette Regec, Alan R. Gintzler*

Department of Biochemistry, State University of New York, Downstate Medical Center, Box 8, 450 Clarkson Avenue, Brooklyn, NY 11203, USA

Accepted 13 April 2005 Available online 23 May 2005

Abstract

Chronic morphine augments protein kinase C (PKC) phosphorylation of G_{β} , which enhances the potency of $G_{\beta\gamma}$ to stimulate adenylyl cyclase II (ACII) activity. The present study demonstrates an in vivo association between phosphorylated G_{β} and a specific PKC isoform, PKC γ . We investigated the association of G_{β} and PKC γ by assessing the ability of anti-PKC γ antibodies to co-immunoprecipitate G_{β} from ³²P-radiolabeled Chinese Hamster Ovary cells stably transfected with a μ -opioid receptor (MOR-CHO). PKC γ immunoprecipitate (IP) obtained from MOR-CHO membranes contained radiolabeled signals of \approx 33 and 36–38 kDa that were subsequently identified as $G_{\beta}(s)$. Chronic morphine significantly increased (\approx 75%) the magnitude of ³²P incorporated into G_{β} present in PKC γ IP. This suggests that G_{β} is an in vivo substrate for PKC γ , which mediates the chronic morphine-induced increment in G_{β} phosphorylation. In order to evaluate AC as a putative effector for phosphorylated $G_{\beta\gamma}$, its presence in IP obtained using anti-AC antibodies was evaluated. Autoradiographic analyses of AC IP also revealed the presence of phosphorylated $G_{\beta\gamma}$ associates and presumably interacts in vivo with AC, indicating that it is a target for the enhanced phosphorylated $G_{\beta\gamma}$ that is generated following chronic morphine treatment. This would contribute to the previously observed shift from predominantly $G_{i\alpha}$ inhibitory to $G_{\beta\gamma}$ stimulatory AC signaling following chronic morphine. The PKC $\gamma - G_{\beta} - AC$ complex identified in this study provides an organizational framework for understanding the well-documented participation of PKC γ in opioid tolerance-producing mechanisms.

© 2005 Elsevier B.V. All rights reserved.

Theme: Neurotransmitters, modulators, transporters, and receptors *Topic:* Second messengers and phosphorylation

Keywords: Protein kinase C y; Phosphorylation; MOR-CHO; Opioid; Tolerance; G protein

1. Introduction

The $G_{\beta\gamma}$ subunit that is generated in parallel with G_{α} following activation of heterotrimeric G proteins is now

recognized as a major signaling entity that targets wideranging effectors [8,9,11,15,16,18,33]. In vivo, G_{β} can exist as a phosphorylated protein. Histidine-phosphorylated G_{β} has been demonstrated in rod outer segment membranes of bovine retina [38], cell membranes obtained from liver, brain, and placental tissue [26], and human leukemia (HL-60) cells [39]. More recently, threonine-phosphorylated G_{β} has been demonstrated in spinal tissue [3]. Importantly, the phosphorylation state of G_{β} exhibits plasticity. Specifically, in both the guinea pig longitudinal muscle myenteric plexus tissue as well as spinal cord, the magnitude of G_{β} phos-

Abbreviations: AC, adenylyl cyclase; IP, immunoprecipitate; MOR-CHO, Chinese Hamster Ovary cells stably transfected with μ -opioid receptor; PKC γ , protein kinase C γ ; BC1, anti-G_{β} common polyclonal antibody; BBC-4, anti-adenylyl cyclase monoclonal antibody

^{*} Corresponding author. Fax: +1 718 270 2129.

E-mail address: alan.gintzler@downstate.edu (A.R. Gintzler).

⁰¹⁶⁹⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.molbrainres.2005.04.004

The phosphorylation state of G_{β} influences multiple determinants of its signaling activity. In vitro phosphorylation of G_{β} by protein kinase A (PKA) and/or protein kinase C (PKC) augments its $G_{s\alpha}$ -dependent stimulation of ACII activity [3]. Additionally, G_{β} phosphorylation decreases its association with G protein receptor kinase 2/3 [6]. The ensuing increased availability of $G_{\beta\gamma}$ subunits to interact with effectors such as the type II family of AC isoforms would further contribute to increase $G_{\beta\gamma}$ stimulatory AC signaling. Participation of (histidine) phosphorylated G_{β} in an enzymatic transfer of a phosphate to GDP at G_{α} subunits [10,38] would also serve to enhance $G_{\beta\gamma}$ signaling by preventing $G_{\alpha}{-}G_{\beta\gamma}$ re-association, thereby maintaining the pool of free $G_{\beta\gamma}$ subunits available for signaling. Collectively, these observations underscore the relevance of the phosphorylation state of G_{β} to modulating $G_{\beta\gamma}$ signaling activity.

In vitro phosphorylation of purified G_{β} by PKC is isoform-specific. PKC γ achieves a high stoichiometry of G_{β} phosphorylation comparable to that produced by PKA or PKC catalytic subunits [3]. In contrast, phosphorylation of G_{β} via PKC α , PKC ζ , or PKC β is negligible [3,41]. This suggests a critical role for PKC γ in regulating G_{β} phosphorylation in vivo.

Hypothesized in vivo interactions between PKC γ and G_{β} were investigated by assessing their co-immunoprecipitation with either anti- G_{β} or anti-PKC γ antibodies. This study reveals that G_{β} and PKC γ can be co-immunoprecipitated by either antibody. This indicates the formation of stable protein complexes suggesting their interaction in vivo. Moreover, chronic morphine augments the magnitude and phosphorylation state of the co-immunoprecipitated G_{β} . As expected, G_{β} co-immunoprecipitates with AC. Notably, chronic systemic morphine also enhances the phosphorylation state of the G_{β} that co-immunoprecipitates with AC. This suggests that AC is a putative effector for phosphorylated $G_{\beta\gamma}\!.$ The relevance of these changes to the previously reported chronic morphine-induced emergence of opioid receptor-coupled $G_{\beta\gamma}$ stimulatory AC signaling is discussed.

2. Materials and methods

2.1. Cell culture

Chinese Hamster Ovary cells stably transfected with rat μ -opioid receptors (MOR-CHO) were maintained in Dulbecco's Modified Eagle's Medium (DMEM) high glucose with L-glutamine (Mediatech, Herndon, VA) supplemented with 10% fetal calf serum (Nova-Tech Inc., Grand Island, NE), 100 units/ml penicillin/streptomycin and 100 µg/ml geneticin (Mediatech). Cells were plated (3.8 × 10⁶ cells/ 150 mm dishes) and grown at 37 °C in a humidified

atmosphere of 90% air/10% CO₂. Two days later, at 90– 95% confluency, cells were treated with or without morphine (1 μ M) for 48 h. Morphine was replenished in fresh media and media were changed for the untreated cells after every 24 h.

2.2. ³²Pi labeling of MOR-CHO cells and Immunoprecipitation

On the day of harvest, cells were incubated for 2 h in phosphate- and serum-free DMEM at 37 °C under normal culture conditions. Later, MOR-CHO cells were washed once with 10 ml phosphate- and serum-free media and incubated with 10 ml of the same media containing [³²P]orthophosphate (150 µCi/ml; PerkinElmer, Boston, MA) for additional 2 h at 37 °C under 90% air/10% CO2. Subsequently, cells were washed thoroughly (twice, 15 ml each) with ice-cold phosphate buffered saline (pH 7.3) and harvested directly in 20 mM HEPES, pH 7.4, containing 10% sucrose, 5 mM EDTA, 1 mM EGTA, 2 mM Dithiothreitol [DTT], 10 mM Na-pyrophosphate, 10 mM NaF, 0.2 mM Na-orthovanadate; protease inhibitors 1 mM Benzamidine, 0.2 mg/ml bacitracin, 2 mg/l Aprotinin, 3.2 mg/l each of Trypsin Inhibitor from soybean and Leupeptin, 20 mg/l each of N-tosyl-L-phenylalanine chloromethyl ketone, N^{α} -p-tosyl-L-lysine chloromethyl ketone and phenylmethylsulfonyl fluoride, complete cocktail inhibitor tablet/50 ml and phosphatase inhibitors 0.5 µM Okadaic acid and 25 nM Calyculin A. Cells were homogenized and centrifuged at $1000 \times g$, 4 °C for 10 min. Supernatants obtained from the low-speed spin were subjected to a high-speed spin at $30,000 \times g$ for 40 min at 4 °C.

Membrane fractions obtained were re-suspended in HEPES buffer (pH 7.4) containing 1 mM each of EDTA, EGTA and DTT, 10 mM Na-pyrophosphate and the same protease and phosphatase inhibitors as mentioned above. Membranes were either stored at -80 °C in aliquots or processed further. For immunoprecipitation, membranes were solubilized in the same buffer containing 150 mM NaCl, 1% Nonidet P-40 (NP-40), 0.5% Na-deoxycholate, 0.1% Na-dodecyl sulfate and 10% glycerol, agitated 60 min at 4 °C and centrifuged (14,000 × g for 20 min at 4 °C). Clear supernatants were used for Protein Assay [2] and immunoprecipitation.

PKCγ was immunoprecipitated using a mouse monoclonal antibody (6 µl/600 µg protein, Sigma Chemical Co.) generated against rat PKCγ amino acid residues 684–697. G_β was immunoprecipitated from cell membranes using a mouse monoclonal antibody generated against amino acid residues 130–145 (3 µl/300 µg protein; BD Biosciences). G_β from spinal cord was immunoprecipitated using a polyclonal anti-G_β common antibody (BC1) raised against the carboxyl terminal 11 amino acids of G_β [20]. This antibody was generously supplied by Dr. J. Hildebrandt (Medical University of South Carolina, Charleston, SC). AC was immunoprecipitated using BBC-4 monoclonal antibodies generated against AC purified from bovine Download English Version:

https://daneshyari.com/en/article/9410633

Download Persian Version:

https://daneshyari.com/article/9410633

Daneshyari.com