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Abstract

In optical imaging experiments of primary visual cortex, visual stimuli evoke a complicated dynamics. Typically, any stimulus with sufficient
contrast evokes a response. Much of the response is the same regardless of which stimulus is presented. For instance, when oriented drifting
gratings are presented to the visual system, over 90% of the response is the same from orientation to orientation. Small differences may be seen,
however, between the responses to different orientations. A problem in the analysis of optical measurements of the response to stimulus in
cortical tissue is the distinction of the ‘global’ or ‘non-specific’ response from the ‘differential’ or ‘stimulus-specific’ response. This problem
arises whenever the signal of interest is the difference in response to various stimuli and is evident in many kinds of uni- and multivariate
data.

To this end, we present enhancements to a frequency-based method that we previously introduced called theperiodic stackingmethod.
These enhancements allow us to separately estimate the dynamics of both the average signal across all stimuli (the ‘global’ response) and
deviations from the average amongst the various stimuli (the ‘stimulus-specific’ response) evoked in response to a set of stimuli. We also
discuss improvements in the signal-to-noise ratio, relative to standard trial averaging methods, that result from the data-adaptive smoothing
in our method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental data of the dynamical response of a noisy
system to a stimulus typically consist of repeated measure-
ments of the response of the system to one or more stimuli.
The challenge of analyzing such data lies in extracting the
part of the measured signal that contains the response from
background noise. Background noise, in this case, can mean
true random noise, but can also mean any part of the signal
that is not in response to the stimulus and therefore has a
random phase with respect to the stimulus.

Here, we present a method to distinguish the dynamics of
the average response from deviations away from the average
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due to differences between the stimuli. In the following,
we will refer to the signal which represents deviations from
the average as thedifferential signal. When responses to
multiple stimuli are measured, there is an average dynamical
response which is common to all stimuli. In many datasets
that we study, the average response contains most of the
power. We are typically interested in the differential response
amongst the various stimuli. In particular, in optical imaging
data of the intrinsic signal, the columnar structure of the
response to oriented drifting gratings is only evident in
the differential response. However, the average response
contains 100 times the power (10 times the signal amplitude)
of the differential response. If these two aspects of the
signal are not accurately estimated and extracted from
the data, it can significantly contaminate the differential
signal.
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The most common method for increasing the signal-to-
noise ratio for stimulus-response data is to average repeated
measurements of the response, a method called trial aver-
aging; this increases the signal-to-noise ratio by a factor of√
M, whereM is the number of repeated measurements. In

this paper, we make use of a more powerful method that we
call periodic stackingfor extracting the response from noisy
data based on signal characteristics in frequency space.

The underlying explanation for increased signal-to-noise
ratio with periodic stacking is accurate identification of sta-
tistically significant sinusoids in the data. A powerful feature
of this method is the elimination of inadmissible frequencies.
This is augmented by the use of multitaper harmonic anal-
ysis (Thomson, 1982; Mitra and Pesaran, 1999). Although
it is not commonly thought of in this respect, trial averag-
ing methods indiscriminately include all sinusoids with the
appropriate base frequency in the estimate of the periodic
signal without checking for statistical significance, therefore
a substantial amount of spurious noise can enter the signal
estimate. By retaining only statistically significant harmon-
ics in the estimate of the response, we reduce the effective
number of degrees-of-freedom in our estimate of the signal
resulting in a data-adaptive smoothing method.

2. Methods

First, we describe the periodic stacking method as applied
to multiple measurements of the response to a single stimulus
(Sornborger et al., 2003). Then we extend the method to the
case of multiple measurements of the responses to multiple
stimuli. To explain the simple underlying idea, we assume all
responsesrm(t) defined for 0< t < T are of equal duration
and concatenate all theM responses to a given stimulus.

The resulting function, of durationMT, we denote byR(t).
We define

R(mT + t) ≡ rm(t) (1)

whererm(t) is the response to themth repetition of the stimu-
lus, of durationT. Since we are measuringM responses to the
same stimulus, the signalR(t) is a combination of aT-periodic
piece and measurement noiseε

R(t) =
∑
k

αk e2πikt/T + ε(t) (2)

wherek is an integer. To understand the structure of the sig-
nal in Fourier space, we perform a Fourier transform on the
signal. The Fourier transformβ(f ) is given by the expression

β(f ) = 1

MT

∫ MT/2
−MT/2

e−2πiftR(t) dt. (3)

Inserting (2) into this expression and evaluating the integral
on the periodic piece gives

β(f ) =
∑
k

αk
sin (MTπ(k/T − f ))

MTπ(k/T − f )
+ ε̃(f ). (4)

whereε̃(f ) indicates the Fourier transform of the noiseε. In
the limit of infinite data, this expression becomes (up to a
normalization factor)

β(f ) =
∑
k

αkδ(k/T − f ). (5)

From this expression, we see that the signal is a sequence of
harmonics{αk} at frequenciesf = k/T .

Knowing the location and complex amplitude of the har-
monics which carry the response and their statistical signifi-
cance is the key to an accurate estimation of the signal. The
above discussion considered a finite duration, continuous sig-
nal. To obtain an estimate of the harmonic amplitudes,{αk}, in
noisy data, we must invertEq. (4). Our data is discretely sam-
pled. Therefore, to estimate the complex amplitudeαk of each
harmonic, we use multitaper harmonic analysis(Thomson,
1982). Multitaper harmonic analysis seeks a solution to the
inverse problem that islocal in the frequency domain. This
high-resolution method allows us to accurately determine the
amplitude and phase of the periodic response and also gives
an estimate of the noise and the statistical significance of
deterministic sinusoids in a signal. Although we consider
multitaper harmonic analysis to be the best, other, for in-
stance, parametric harmonic detection methods could be used
as well. Using multitaper harmonic analysis, we identify and
extract the statistically significant sinusoids in the data which
lie at multiples of the base frequency. Response contributions
not located at frequencies commensurate with the base fre-
quency are discarded as noise. We recombine the estimated
sinusoids, thereby forming an estimate of the dynamical re-
sponse.

The single stimulus analysis can be directly extended to
the case of multiple stimuli. This is achieved by concatenating
responses toN stimuli, each of durationT, resulting in a total
stimulus period of durationNT. We acquireMmeasurements
of responses to theN stimuli, resulting in a signal of length
MNT. Thus, ifρmn(t), 0< t < T denotes the response in the
mth repeat of thenth stimulus, we can define

R(mNT + nT + t) ≡ ρmn(t) (6)

for 0< t < T ,m = 0, . . . ,M − 1 andn = 0, . . . , N − 1.
To understand the structure of this signal in Fourier space,

we proceed similarly to the above discussion of the single
stimulus case. The signalR(t) can be expressed as anNT-
periodic piece plus measurement noise,

R(t) =
∑
k

αk e2πikt/NT + ε(t). (7)

From the arguments in the previous section, theNT-periodic
part of this signal lies at frequenciesf = k/NT , wherek is
an integer. The Fourier transform of the signal is

β(f ) = 1

MNT

∫ MNT
0

e−2πiftR(t) dt. (8)
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