

Available online at www.sciencedirect.com



Neuroscience Research 53 (2005) 376-383

Neuroscience Research

www.elsevier.com/locate/neures

# Spatial diversity in gene expression for VDCC $\gamma$ subunit family in developing and adult mouse brains

Masahiro Fukaya<sup>a,\*</sup>, Maya Yamazaki<sup>b</sup>, Kenji Sakimura<sup>b</sup>, Masahiko Watanabe<sup>a</sup>

<sup>a</sup>Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan <sup>b</sup>Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8122, Japan

> Received 17 June 2005; accepted 22 August 2005 Available online 19 September 2005

#### Abstract

The  $\gamma$  subunit of voltage-dependent Ca<sup>2+</sup> channels (VDCCs) is characterized by molecular diversity and regulation of AMPA-type glutamate receptors as well as VDCCs. In the present study, we examined expressions for the VDCC $\gamma$ 1–8 subunit mRNAs in developing and adult mouse brains by in situ hybridization. In adult brains, the  $\gamma$ 2 and  $\gamma$ 7 subunit mRNAs were widely expressed in various grey matter regions with the highest level in cerebellar Purkinje cells and granule cells. The  $\gamma$ 3 and  $\gamma$ 8 subunit mRNAs predominated in the telencephalon, with the latter being at striking levels in the hippocampus. The  $\gamma$ 4 subunit mRNA was enriched in the olfactory bulb, striatum, thalamus and hypothalamus. The  $\gamma$ 5 subunit mRNA was abundant in the olfactory bulb, hippocampal CA2, thalamus, inferior colliculus and Bergmann glia. Transcripts of these subunits were detected in embryonic brains: some showed well-preserved spatial patterns ( $\gamma$ 2,  $\gamma$ 5,  $\gamma$ 7 and  $\gamma$ 8), while others underwent developmental up- ( $\gamma$ 3) or down-regulation ( $\gamma$ 4). In contrast, the  $\gamma$ 1 and  $\gamma$ 6 subunit mRNAs were negative or very low throughout brain development. Therefore, the present study has revealed spatial diversity in gene expression for individual VDCC $\gamma$  subunits, presumably reflecting functional diversity of this protein family and their differential involvement in neural function.

© 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Keywords: VDCCy subunit; Stargazin; TARPs; Development; mRNA; In situ hybridization; Brain

## 1. Introduction

The  $\gamma$  subunit of voltage-dependent Ca<sup>2+</sup> channels (VDCCs) has been originally identified as an auxiliary subunit of 1,4dihydropyridine (DHP)-sensitive or L-type VDCCs in skeletal muscles (Bosse et al., 1990; Jay et al., 1990; Powers et al., 1993). The second subunit,  $\gamma$ 2 subunit or stargazin, was identified as a gene responsible for the spontaneous mutant mouse, *stargazer*, which is characterized by absence epilepsy and ataxia (Letts et al., 1998). Subsequent studies have revealed six additional subunits and, hence, there are eight members to date in the VDCC $\gamma$  family (Black and Lennon, 1999; Burgess et al., 1999, 2001; Klugbauer et al., 2000; Chu et al., 2001; Moss et al., 2002). Each  $\gamma$  subunit contains four putative transmembrane domains with intracellularly located N- and Ctermini (Chu et al., 2001; Black, 2003). The  $\gamma$ 1,  $\gamma$ 2,  $\gamma$ 3,  $\gamma$ 4,  $\gamma$ 5

and  $\gamma7$  subunits have been shown to affect the function of Ltype, T-type and P/Q-type VDCCs, when expressed in various combinations (Wei et al., 1991; Eberst et al., 1997; Letts et al., 1998; Klugbauer et al., 2000; Freise et al., 2000; Rousset et al., 2001; Green et al., 2001; Moss et al., 2002; Held et al., 2002). On the other hand, the  $\gamma^2$  subunit and its structurally-related members,  $\gamma 3$ ,  $\gamma 4$  and  $\gamma 8$  subunits, are crucial for cell surface expression, synaptic targeting, recycling, channel activity and gating of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and hence named as transmembrane AMPA receptor regulatory proteins (TARPs) (Chen et al., 2000; Tomita et al., 2003, 2004, 2005; Yamazaki et al., 2004; Priel et al., 2005). The  $\gamma$  subunit family is expressed in various tissues, including the brain, skeletal muscle, heart, lung and testis (Chu et al., 2001). In the brain, all  $\gamma$  subunits, except the  $\gamma$ 1 subunit, are expressed (Chu et al., 2001). Of these, four TARPs have been reported to display high and distinct expressions in the developing and adult brains (Klugbauer et al., 2000; Chen et al., 2000; Tomita et al., 2003). However,

<sup>\*</sup> Corresponding author. Tel.: +81 11 706 5030; fax: +81 11 706 5031. *E-mail address*: mfukaya@med.hokukdai.ac.jp (M. Fukaya).

comparative and systematic analysis on the expression of the VDCC $\gamma$  family has not yet been performed. In the present study, we examined expressions for the VDCC $\gamma$ 1-8 subunit mRNAs in developing and adult mouse brains by in situ hybridization with [<sup>33</sup>P]dATP-labeled antisense oligonucleotide probes, and have revealed their distinct regional and cellular expression in the brain.

## 2. Materials and methods

### 2.1. Probes

To detect mRNAs for each VDCCy subunit, specific antisense oligonucleotide probes were synthesized as follows: 5'-gtgctctggctcagcgtccatgcaggattcccaggggttctgagg-3' for the y1 subunit (GenBank accession No. AJ006306), 5'gatgcgggtgatggcggaggcctggaggtagtcggtggcgcgggc-3' for the  $\gamma$ 2 subunit (accession No. AF077739), 5'-cggcaggcgcgcaaatgtagacttcttcaggagctctgaatggga-3' for taaggaactcccgcttggt-3' for the  $\gamma$ 4 subunit (accession No. AJ272045), 5'catctggtcatagtctgggcacttgagcaaagctgggtagttgct-3' for the  $\gamma$ 5 subunit (accession No. AF361347), 5'-ttgggccaccccacttggggcacagtgacctccagggccaggaag-3' for the v6 subunit (accession No. AF361348), 5'-gcgatagtgaaagtactgctcagagctgctgggcctgttcat-3' for the  $\gamma$ 7 subunit (accession No. AF361349), and 5'-acaccacaaacccctcttcattccagcgtttcaatgactccag-3' for the y8 subunit (accession No. AF361350). Oligonucleotide probes were labeled with [<sup>33</sup>P]dATP using terminal deoxyribonucleotidyl transferase (Invitrogen, Carlsbad, CA).

#### 2.2. In situ hybridization

Under deep pentobarbital anesthesia, the brains were freshly obtained from C57BL/6J mice at embryonic days 13 (E13), E18, postnatal days 1 (P1), P7, P14, P21 and adult (4 months). The day after overnight mating was designated as E0, and the day of birth as P1. Fresh frozen sections (20 µm thickness) were cut with a cryostat (CM1900, Leica, Nussloch, Germany) and mounted on glass slides precoated with 3-aminopropyltriethoxysilane. Probe labeling and hybridization were performed as described (Fukaya et al., 2005) with minor modifications. Sections were treated at room temperature with the following incubation steps: fixation with 4% paraformaldehyde-0.1 M sodium phosphate buffer (pH 7.2) for 10 min, 2 mg/ml glycine-phosphate-buffered saline (pH 7.2) for 10 min, acetylation with 0.25% acetic anhydride in 0.1 M triethanolamine-HCl (pH 8.0) for 10 min and prehybridization for 1 h in a buffer containing 50% formamide, 50 mM Tris-HCl (pH 7.5), 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 0.6 M NaCl, 0.25% SDS, 200 µg/ml tRNA, 1 mM EDTA and 10% dextran sulfate. Hybridization was performed at 42 °C for 12 h in the prehybridization buffer supplemented with 10,000 cpm/µl of [<sup>33</sup>P]dATP-labeled oligonucleotides. Slides were washed twice at 55 °C for 40 min in  $0.1 \times$  SSC containing 0.1% sarcosyl. Sections were exposed either to BioMax (Kodak, Rochester, NY) or to Nuclear Track emulsion (NTB-2, Kodak)



parasagittal brain sections exposed to an X-ray film. Insets show negative hybridizing signals by adding unlabeled probes. Cb, cerebellum; CP, caudate-putamen; Cx, cerebral cortex; Hi, hippocampus; Hy, hypothalamus; Mb, midbrain; MO, medulla oblongata; OB, olfactory bulb; Th, thalamus. Scale bars, 1 mm.

Download English Version:

https://daneshyari.com/en/article/9434438

Download Persian Version:

https://daneshyari.com/article/9434438

Daneshyari.com