

Progress in Neurobiology 77 (2005) 139-165

www.elsevier.com/locate/pneurobio

The restless legs syndrome

G. Barrière a,d, J.R. Cazalets B. Bioulac b, F. Tison c, I. Ghorayeb b,*

^a Laboratoire de Neurophysiologie, UMR-CNRS 5543, Université Bordeaux 2, Bordeaux, France

^b Service d'Explorations Fonctionnelles du Système Nerveux, Hôpital Pellegrin, Place Amélie Raba-Léon, 33076 Bordeaux cedex, France

^c Service de Neurologie, Hôpital du Haut Lévêque, Avenue de Magellan, 33604 Pessac cedex, France

^d Département de Physiologie, Centre de Recherche en Sciences Neurologiques, Faculté de Médecine,

Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Que., Canada H3C 3JT

Received 8 August 2005; received in revised form 19 October 2005; accepted 21 October 2005

Abstract

The restless legs syndrome (RLS) is one of the commonest neurological sensorimotor disorders at least in the Western countries and is often associated with periodic limb movements (PLM) during sleep leading to severe insomnia. However, it remains largely underdiagnosed and its underlying pathogenesis is presently unknown. Women are more affected than men and early-onset disease is associated with familial cases. A genetic origin has been suggested but the mode of inheritance is unknown. Secondary causes of RLS may share a common underlying pathophysiology implicating iron deficiency or misuse. The excellent response to dopaminegic drugs points to a central role of dopamine in the pathophysiology of RLS. Iron may also represent a primary factor in the development of RLS, as suggested by recent pathological and brain imaging studies. However, the way dopamine and iron, and probably other compounds, interact to generate the circadian pattern in the occurrence of RLS and PLM symptoms remains unknown. The same is also the case for the level of interaction of the two compounds within the central nervous system (CNS). Recent electrophysiological and animals studies suggest that complex spinal mechanisms are involved in the generation of RLS and PLM symptomatology. Dopamine modulation of spinal reflexes through dopamine D3 receptors was recently highlighted in animal models. The present review suggests that RLS is a complex disorder that may result from a complex dysfunction of interacting neuronal networks at one or several levels of the CNS and involving numerous neurotransmitter systems.

Keywords: Restless legs syndrome; Periodic limb movements; Dopamine; Iron; Opioids; Noradrenaline; Spinal cord

Contents

1.	Introduction	140
2.	Clinical presentation	140
3.	Epidemiology	141
4.	Genetics	142
5.	Periodic limb movements	142
6.	Circadian rhythm of RLS and PLM	143
7.	Secondary RLS	144
	7.1. Iron deficiency	144
	7.2. Uremia and end-stage renal disease	145

Abbreviations: CNS, central nervous system; CPG, central pattern generator; CSF, cerebrospinal fluid; CSP, cortical silent period; D3KO, D3 knock-out; DAT, dopamine transporter; EMG, electromyography; GH, growth hormone; ICF, intracortical facilitation; ICI, intracortical inhibition; IRLSSG, international restless legs syndrome study group; IRPs, iron regulatory proteins; MEP, motor evoked potentials; MRI, magnetic resonance imaging; PAM, periodic arm movements; PET, positron emission tomography; PLM, periodic limb movements; PD, Parkinson's disease; PRL, prolactin; PSG, polysomnography; RLS, restless legs syndrome; SN, substantia nigra; BH4, tetrahydrobiopterin; TfR, transferrin receptor; TH, tyrosine hydroxylase; SSRIs, selective serotonin re-uptake inhibitors; SPECT, single-photon emission computed tomography; TMS, transcranial magnetic stimulation; VTA, ventral tegmental area

E-mail address: imad.ghorayeb@umr5543.u-bordeaux2.fr (I. Ghorayeb).

^{*} Corresponding author. Tel.: +33 556 79 55 13; fax: +33 556 79 61 09.

	7.3. Pregnancy	145
	7.4. Neuropathy	146
	7.5. Parkinson's disease	146
8.	Dopamine and RLS	147
9.	Opioids and RLS	147
10.	Iron and RLS	147
11.	Brain structures	148
12.	Sensorimotor processes at the spinal cord level	149
	12.1. Spinal origin of RLS?	149
	12.2. Is there a spinal pattern generator involved in PLM?	149
	12.3. State- and task-dependent modulation of spinal sensorimotor networks	150
	12.3.1. Sleep-wake modulation	150
	12.3.2. Task-dependent modulation	150
	12.4. Neuromodulatory control of spinal sensorimotor networks	150
	12.4.1. L-DOPA and catecholamines	151
	12.4.2. The action of dopamine on the spinal cord networks	151
	12.4.3. The action of noradrenaline on the spinal cord networks	152
	12.4.4. Inhibitory mechanisms in the spinal cord	152
	12.4.5. The opiate system in the spinal cord	153
13.	Animal models of RLS and PLM	153
	13.1. Spontaneous behavioral approaches	154
	13.2. Lesioning approaches	154
	13.3. Pharmacologic approaches	154
	13.4. Metabolic approaches	154
	13.5. Genetic approaches.	155
14.	Conclusion	155
	References	156

1. Introduction

The restless legs syndrome (RLS) remains one of the most intriguing and commonest chronic sensorimotor disorders, yet it is still a poorly recognized condition in primary care settings as physicians are frequently unaware of the condition and misdiagnosis is common (Allen et al., 2005; Hening, 2004; Tison et al., 2005; Van De Vijver et al., 2004; Walters et al., 1996). Even though RLS was first identified and characterized in the forties (Ekbom, 1945), it is only recently that the International Restless Legs Syndrome Study Group (IRLSSG) outlined its clinical features (Allen et al., 2003). The underlying neurophysiological and biochemical mechanisms are currently being investigated and recent animal and molecular studies have also begun to elucidate the still uncertain nature of the basic pathophysiology of RLS.

In the present review, we have attempted to summarize the most relevant and recent clinical, epidemiological and genetic aspects of RLS. Much of the manuscript also concerns the secondary forms of RLS as we believe that some may share a similar pathophysiology. The latter has been discussed in separate sections devoted to major biochemical and neurotransmitter systems, brain structures and particularly to spinal mechanisms thought to be involved in the pathophysiology of RLS. Finally, the article concludes with a summary of certain major animal models with pathophysiological significance which have emerged over recent years and which are likely to influence future research in this field.

Despite extensive literature on the topic, RLS appears increasingly to be a complex disorder whose underlying pathophysiology is still unraveled. However, this should not impede clinical and fundamental research efforts for better recognition of the disease.

2. Clinical presentation

RLS is a common and treatable chronic sensorimotor disorder clinically characterized by a compelling urge to move the limbs, accompanied by uncomfortable and unpleasant sensations in the extremities. Typically, the legs are mostly affected but arm involvement has also been reported (Ekbom, 1960; Michaud et al., 2000; Montplaisir et al., 1997; Ondo and Jankovic, 1996). The diagnosis of RLS is clinical and is based on the patient's description. Subjective symptoms, which are the hallmark of the condition, were first extensively described by Ekbom in the 1940s (Ekbom, 1945), but consensual diagnostic criteria were recently outlined allowing a more uniform diagnosis worldwide (Walters, 1995), and were then updated by the IRLSSG (Allen et al., 2003). Accordingly, four mandatory clinical features are required to establish the diagnosis of RLS, namely (i) an urge to move the legs, usually accompanied or caused by uncomfortable and unpleasant sensations in the legs; (ii) an urge to move or unpleasant sensations that begin or worsen during periods of rest or inactivity such as lying or sitting; (iii) an urge to move or unpleasant sensations that are partially or totally relieved by movement, such as walking or stretching, at least as long as the

Download English Version:

https://daneshyari.com/en/article/9435115

Download Persian Version:

https://daneshyari.com/article/9435115

<u>Daneshyari.com</u>