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Abstract

Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses.
Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that
separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around
the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and
density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly
since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth
outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a
cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A
multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of
interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely
importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the
exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate
cascades of signals flowing from the spine surface to the actin cytoskeleton.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

More than 100 years ago, Santiago Ramon y Cajal
discovered that “‘the surface of Purkinje cell dendrites
appears bristling with thorns or short spines’ and proposed
that ““such spines could be the points where electrical charge
or current is received” (Ramon and Cajal, 1888, 1899).
Cajal visualized neurons with a silver impregnation method
developed by Golgi (1873) and observed them using the
optical microscopes available in the late 19th century. Many
years later, the efforts of investigators using more advanced
imaging technologies proved that Cajal’s hypothesis was
indeed correct (Gray, 1959). Today, it is well established that
most excitatory synapses are formed between axon terminals
and small protrusions on the surface of dendrites known as

“dendritic spines” (Harris, 1999; Hering and Sheng, 2001)
(Fig. 1). Dendritic spines represent the postsynaptic
component of most excitatory synapses and some inhibitory
synapses. Spines are present on different populations of
neurons in the brain, and have been best characterized in
pyramidal neurons of the hippocampus and neocortex as
well as in Purkinje cells of the cerebellum.

The prototypical dendritic spine consists of a bulbous
head connected to the dendritic shaft by a narrow neck
(Sorra and Harris, 2000) (Fig. 1). However, spines come in
a wide range of sizes and shapes, even within the same
brain region. Stubby spines without a neck and filopodial
spines without a head are found side by side with
mushroom-shaped spines with a large and sometimes
irregularly shaped head (Yuste and Bonhoeffer, 2004)
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