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A new hypothesis on meandering atmospheric flows
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Abstract

Low wind speeds are often associated with high pollutant concentrations in the atmosphere. Dispersion modelling in

such conditions is still an important challenge for scientists due to phenomena associated with low wind speeds, which

are not well understood. One such phenomenon is the large horizontal oscillation of the atmosphere, which is called

meandering. This study aims at providing a new hypothesis for the cause of meandering. Meandering is explained as an

inherent property of atmospheric flows in low wind speed conditions, and generally no particular trigger mechanism is

necessary to initiate meandering as discussed previously by several scientists (e.g. gravity waves). The hypothesis is

verified by numerically and analytically solving the two-dimensional Reynolds averaged Navier–Stokes equations under

the assumption of negligible Reynolds stress terms, Coriolis forces, and pressure gradients in low wind speed

conditions. Meandering is shown to arise when the 2-D flow studied here is approaching or near approximate

geostrophic balance, and is damped out and vanishes when the Reynolds stresses are larger. Further, the analytical

solution provides an autocorrelation function for the horizontal velocity components, which was recently proposed by

Anfossi et al. (Boundary Layer Meteorol. (2005), 114, 179–203) for use in low wind speed conditions. In addition, a new

set of Langevin equations is proposed for simulating dispersion in low wind speed conditions.
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1. Introduction

Simulating airborne dispersion in low wind speed

(hereafter LWS) conditions is a difficult task because

when the wind speed decreases below a certain threshold

value, it is no longer possible to define a precise mean

wind direction and the wind direction oscillates with

periods of the order of half an hour or more. These large

horizontal low frequency oscillations (meandering) seem

to be more or less independent of atmospheric stability,

specific topographical features, or season (Anfossi et al.,

2005).

Currently, no conclusive theory is available, which

helps to explain the phenomenon of meandering found

under differing stability, meteorological conditions and

locations. In this direction, the present paper aims at
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offering a physically based theory of flow meandering in

LWS conditions. The main motivation comes from a

previous paper (Anfossi et al., 2005), where it was found

that meandering induces an important modification of

the Eulerian autocorrelation function (EAF) of the

horizontal wind components that exhibits an oscillatory

behaviour and large negative lobes. It was also found

(Anfossi et al., 2005) that an analytical form, proposed

by Frenkiel (1953) that accounts for this oscillatory

aspect, fitted fairly well the experimental EAFs, namely

RðtÞ ¼ e�ðt=ðm2þ1ÞTÞ cos
mt

ðm2 þ 1ÞT
: (1)

This may be written in a different way (Murgatroyd,

1969) as

RðtÞ ¼ e�pt cosðqtÞ (2)

with

p ¼
1

ðm2 þ 1ÞT
and q ¼

m

ðm2 þ 1ÞT
: (3)

Eq. (1) contains two parameters: one, T, that can be

associated with the classical integral time scale due to a

fully developed turbulence and the second, m, which is a

non-dimensional quantity that controls the meandering

oscillation frequency. In fact, the latter controls the

absolute value of the negative lobe in the EAF. It was

also found that relationship (1) correctly fits the

experimental RðtÞ in LWS, while the classical exponen-

tial form completely fails. In particular, Frenkiel’s form

recovers the classical results, valid for non-LWS, when

the meandering effects are not considered (i.e. by setting

m ¼ 0).

We recall that the presence of significant negative

lobes in the EAF has a strong effect in dispersion

modelling, especially in the immediate vicinity of a

source (Oettl et al., 2001).

Based on these previously found results, the aim of the

present paper is to investigate the physical processes

responsible for the meandering phenomenon and to

derive the expression of the above given EAF from basic

momentum conservation equations. To meet both these

aims, our analysis is based on the Reynolds averaged

Navier–Stokes (RANS) equations in two dimensions:

qū
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þ ū

qū

qx
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qū
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; (4)
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; (5)

where ū and v̄ denote the mean wind components in x-

and y-direction averaged over a certain time interval

(m s�1), r̄ is the mean density (kgm�3), u0 and v0 are the

velocity fluctuations (m s�1), p̄ is the mean pressure (Pa),

and f c is the Coriolis parameter (s
�1).

The first topic was studied by means of two

complementary methods: a numerical integration and

an analytical solution of Eqs. (4) and (5), whereas from

the latter, the form of the EAF found in our previous

paper is recovered (second topic).

While in the analytical solution, provided it exists, one

has an explicit view of all the parameters, kept, in

general, constant, controlling the physical process, the

numerical integration yields a more general view of the

process when the various parameters are allowed to

vary. The analytical solution allows the understanding

of the role played by any parameter, when kept

constant, on the studied process in a concise way. On

the other hand, the numerical integration is able to show

the role played by the parameters, letting them vary both

in time and space, but for a complete understanding of

the phenomenon a great number of runs should be

performed. The numerical simulations may also be

helpful for a discussion about mechanisms necessary to

initiate meandering.

2. Numerical simulations

In the following, we try to find out whether mean-

dering could be an inherent property of atmospheric

flows under certain conditions similar to e.g. flow

behaviour above and below the critical Reynolds

number, which describes well whether a flow becomes

laminar or turbulent. Here, we try to examine under

which conditions meandering will appear in atmospheric

flows. As a starting point we use the RANS equations in

two dimensions. This implies that the mean vertical

velocity and its spatial derivatives are close to zero, and

that all spatial derivatives of the cross-correlations

including w0 can be neglected. These assumptions are

generally fulfilled in LWS and flat terrain. Further, it is

well known that the Reynolds stress terms (considering a

fully developed turbulence only) and the pressure

gradient terms on the right-hand side take very low

values during LWS, as mechanically induced turbulence

due to shear forces is weak then. This is even more so for

the stable boundary layer. As the Coriolis forces are also

weak in such conditions, we may conveniently start our

investigations with the assumption, that the terms on the

right-hand sides in Eqs. (4) and (5) can as a first

approximation be neglected. Further, taking the time

derivative of Eq. (5) and substituting Eq. (4) into (5) gives

q2v̄
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Eq. (6) can be considered a hyperbolic differential

equation of second order (see Section 2 for a detailed
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