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Abstract

Alternative search strategies for the directed evolution of proteins are presented and compared with each other. In particular, two

different machine learning strategies based on partial least-squares regression are developed: the first contains only linear terms that

represent a given residue’s independent contribution to fitness, the second contains additional nonlinear terms to account for

potential epistatic coupling between residues. The nonlinear modeling strategy is further divided into two types, one that contains all

possible nonlinear terms and another that makes use of a genetic algorithm to select a subset of important interaction terms. The

performance of each modeling type as a function of training set size is analysed. Simulated molecular evolution on a synthetic

protein landscape shows the use of machine learning techniques to guide library design can be a powerful addition to library

generation methods such as DNA shuffling.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Technologies for protein engineering span a wide
spectrum: from rational design based on molecular
mechanics/dynamics at one end to random mutagenesis
by error prone PCR at the other (van Regenmortel,
2000; Chen, 2001). Throughout this spectrum, recursive
methods have been used to improve proteins through
successive rounds of evolution. In particular, methods
based on recombining beneficial diversity from im-
proved variants have enjoyed great success. Such
techniques are often able to obtain significantly im-
proved proteins using fewer assays than required by
ultra high throughput screening methods (Stemmer,
1994; Ness et al., 1999, 2002). Such recursive, recombi-
nation-based techniques are increasingly applied to
protein engineering problems and are the focus of
continued study (Kurtzman et al., 2001).

Given the widely observed success of these techniques,
the next step in the evolution of protein engineering may
be had in finding better ways to accelerate the
recombination of beneficial diversity. For this to work,
the ability to tease out important elements of diversity
that contribute to improved function is key. Machine
learning techniques used to analyse multivariate data
sets are ideally suited to this task and have been used
extensively in many engineering fields. Small molecule
quantitative structure activity relationships (QSARs)
have been used for many years in medicinal chemistry to
improve the search for biologically active compounds
(Kubinyi, 1997a, b; Byvatov et al., 2003; Byvatov and
Schneider, 2004). Likewise peptide engineering has also
made use of machine learning techniques to analyse and
create improved molecules (Mee et al., 1997; Cho et al.,
1998; Bucht et al., 1999; Lee et al., 2000).
Machine learning techniques are becoming more

popular in biological engineering. Several researchers
have looked at the fitness landscapes of a number of
proteins and protein–protein interactions, building
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statistical models for predicting function given the
sequence alone (Lu et al., 2001; Aita et al., 2002; De
Genst et al., 2002). To date, less work has been done
using statistical models to optimize proteins (as opposed
to the much smaller peptides). One example is a peptide-
QSAR model that was used to optimize the glycosyl
phosphatidylinositol (GPI) modification for a protein
with a C-terminal signal peptide (Bucht et al., 1999).
The work presented here is similar to that found in

earlier studies that promote the use of machine learning
techniques for sequence-oriented evolution (Schneider et
al., 1994, 1995a, b). Although these earlier studies were
focused on peptides and protein precursor cleavage sites,
they are conceptually similar to the current work in as
much as proteins can be viewed mathematically and
phenomenologically as large peptides. Though one
study (Schneider et al., 1994) was criticized for possibly
not using enough data to train a machine learning
algorithm (Darius and Rojas, 1994), the criticism was
later found to be unwarranted as highly active, novel
peptides were found using the trained neural nets
(Schneider et al., 1998; Wrede et al., 1998).
Two important advancements have taken place

over the last 10 years to facilitate the use of machine
learning techniques for protein engineering: (1) The
ability to generate focused combinatorial protein
libraries, (2) The availability of cheap, fast, and accurate
DNA sequencing. Together these advancements make
the use of machine learning techniques for protein
engineering feasible today. For many practical applica-
tions of interest, only several dozens or hundreds of
variants need to be analysed in order to generate
meaningful statistical models that can be used to
engineer improved variants, a condition well within
today’s capabilities.
The viability of using machine learning techniques

for the directed evolution of proteins was evaluated
earlier (Fox et al., 2003). The machine learning based
algorithm begins with the creation of a combinatorial
protein library, followed by physical assays that
generate sequence/activity data. This information is
then used to build statistical models that can then be
interrogated to design new libraries. The cycle can be
repeated, often adding new diversity at each cycle, by
some combination of rational design or random
mutagenesis. One perceived limitation of the earlier
work is that it assumed a given residue’s contribution
to fitness was independent of context. Such a linear
model may not be capable of identifying important
nonlinear interactions between residues. The purpose
of this work is to help ascertain the degree to which
nonlinear interactions (and the use of models that
attempt to capture such interactions) affect the
efficiency and robustness of statistical, evolutionary
search algorithms that are used to engineer improved
proteins.

2. Methods

2.1. Problem coding

Protein variants can be created by any number of
techniques that are currently available for use in the
construction of combinatorial protein libraries. Such
techniques include both classical and synthetic DNA
shuffling (Stemmer, 1994; Ness et al., 1999, 2002). In
both modes of shuffling the process begins with a fixed
set of diversity found in either the homologs (for
classical or family shuffling) or from rationally targeted
diversity (for synthetic shuffling). This starting diversity
is typically far less than the theoretically accessible
space—even a small protein of 100 residues has 20100

possible sequences. Thus only a subset of the potential
sequence space can be examined at any one round of
evolution. In practice about 5–30% of a 300-residue
chain may undergo some variation in a shuffled library.
New diversity can be added in subsequent rounds of
evolution (through random or site directed mutagenesis)
in order to supply the evolutionary fuel required for
further gains in fitness. In the present work, a fixed
number of positions are assumed to undergo some
degree of variation during one round of evolution. The
task here is to examine how efficient the algorithm is for
such a fixed search space. The inclusion of additional
diversity in subsequent rounds of evolution is a separate,
somewhat orthogonal consideration that should not
detract from the general applicability and usefulness of
the proposed method for optimizing proteins.
Let us assume that we have sequence and activity data

for S protein variants. In practice, large segments of the
sequence alignment may not contain any diversity
between the variants and are excluded from further
analysis. This does not mean that the variable positions
in the alignment are not interacting physically with the
fixed regions of the protein. In fact there is likely to be
strong interactions with fixed parts of the protein, but
since those parts are not varying they do not play a role
in building a statistical model of the local fitness
landscape. The local fitness landscape consists only of
those residues that are undergoing variation. Our goal in
building a statistical model is to generate an approxima-
tion to the local fitness landscape that can be used to
extrapolate to nearby regions of sequence space. A
global fitness landscape, though ideal to have, is well
beyond the scope, capability and often the practical
need of the engineering process.
We create dummy variables for the N variable

positions within the sequence alignment. The example
in Fig. 1a shows the first 27 positions from an alignment
of protein variants. For brevity we only show the
N-terminal portion of the protein alignment but in
practice any number of positions along the length of the
protein may undergo variation during a round of
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