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Abstract

The goal of this paper is to analyse the scaling properties of childhood infectious disease time-series data. We present a scaling
analysis of the distribution of epidemic sizes of measles, rubella, pertussis, and mumps outbreaks in Canada. This application
provides a new approach in assessing infectious disease dynamics in a large vaccinated population. An inverse power-law (IPL)
distribution function has been fit to the time series of epidemic sizes, and the results assessed against an exponential benchmark
model. We have found that the rubella epidemic size distribution and that of measles in highly vaccinated periods follow an IPL. The
IPL suggests the presence of a scale-invariant network for these diseases as a result of the heterogeneity of the individual contact
rates. By contrast, it was found that pertussis and mumps were characterized by a uniform network of transmission of the
exponential type, which suggests homogeneity in the contact rate or, more likely, boiled down heterogeneity by large intermixing in
the population. We conclude that the topology of the network of infectious contacts depends on the disease type and its infection
rate. It also appears that the socio-demographic structure of the population may play a part (e.g. pattern of contacts according to
age) in the structuring of the topology of the network. The findings suggest that there is relevant information hidden in the variation
of the common contagious disease time-series data, and that this information can have a bearing on the strategy of vaccination
programs.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction qualitatively the observed frends of the infectious disease

time series from large populations insofar as the

Basically, there are three methods to extract the
structure of infectious disease time-series data. Firstly,
the deterministic compartmental models, such as SEIR,
allow the identification of the main actors of the
transmission of infections in populations (Anderson
and May, 1991). This well-known method mirrors
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biological characteristics of the modeled disease are
known (e.g. the duration of the period of infectivity,
latent period, and immune status after infection). The
SEIR model captures the mechanics of disease infection
in the population and allows for successful predictions.
Thus, the following SEIR model could be applied to
measles:
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where the rates (4,f,r) of change (per unit time)
in the number susceptible (S), exposed (FE), infectious
(I) and immune (R) are given by the following
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equations:

dS/dr = —18(),
dE/dt = AS(t) — fE(2),
dI/dt = fE(t) — rl(2),
dR/dt = rl(1),

where S(¢) is the number susceptible at time ¢, E (¢) the
number infected but not yet infectious at time ¢, 7 (¢) the
number infectious at time ¢, R (¢) the number immune at
time ¢, A the rate (force) of infection per unit time, f the
rate at which an infected individual becomes infectious
per unit time, and r the rate at which an infectious
individual recovers per unit time.

The SEIR model reflects a collective dynamic from
the mean individual biological parameters of the disease.
The SEIR is an explanatory model of the collective
dynamic. The SEIR is useful in modeling moderately
complex dynamics.

Secondly, there is the stochastic modeling technique
of Box-Jenkins, also known as the autoregressive,
integrated, moving average (ARIMA) method (Box et
al., 1994). The method models the empirical time series
by seeking the parameters that will reproduce the
variations in the series as accurately as possible. The
method actually models the dependent structure em-
bedded in the time series. If we denote the values of a
series at equally spaced time ¢, t—1, t—2,... by Z,, Z,_,,
Z;_5..., the Box—Jenkins method distinguishes three
possible processes that account for the dependent
structure between successive observations:

(1) Autoregressive process (AR): Z;=a,+ $1Z,—1.
Here, the current time-series observation (Z,) is
determined by a portion of the preceding observa-
tion (Z,_1), and a current random shock (a,) (order 1
process). The above model is a special case of the
following general model (an autoregressive model of
orderp): Z, = a,+ ¢ Ziy + G Zi2+ -+ 9 Z1—p.

(2) Moving average process (MA): Z, = a, — 01a,_;. In
this model, the current time-series observation, Z,, is
composed of a current random shock (a,) and
portion of the preceding random shock (a,_;) (order
1 process). This simple model is a special case of the
following general model (a moving average model of
order q): Z, = a; — Oha;—1 — - - - 04a,—4.

(3) Integration (I): Z, = a; + Z,_;. If a series has to be
differenced to stabilize the mean, then the model
corresponding to the original series is called inte-
grated. In this process, Z, is the sum of the current
random shock (¢,) and the preceding observation.

Empirical time series can be adjusted by any one of
these processes. Also, more than one process can be used
to fit the data such as an ARMA(p,q) model. Moreover,
cyclical or periodic fluctuations that repeat themselves

regularly in time should also be taken care of if they
occur. It is also possible albeit rare to find a series that
embeds more than one term of the same process. The
aim of Box—Jenkins modeling is to transform a time
series into a white noise (uncorrelated random resi-
duals). It follows from the above that a model must
remain as simple as possible in order to be consistent
and should contain only short-term dependencies
(autocorrelations) to be modeled adequately. If, on the
contrary, long-term autocorrelations involving nonli-
nearities are embedded in the data, the Box—Jenkins
model may fail to adjust the data properly unless one is
ready to increase the order of the model; doing so,
however, may jeopardize the stability of the estimation
of the coefficients and invalidate the model. Therefore,
the Box—Jenkins methodology, although well known,
was rarely applied to time series of infectious diseases.
The method allows one to describe the collective pattern
of the dynamics while ignoring the biological specifics of
the disease and the nonlinearity of the disease process.
This result has been confirmed by our latest analyses
(Trottier and Philippe, 2004a).

In order to gain more insight into the dynamic of
population disease processes, a new model, the inverse
power-law (IPL) distribution function, has been sug-
gested for time series from small populations and large
mass vaccinated populations (Rhodes and Anderson,
1996a,b; Rhodes et al., 1997,1998). The method is
stochastic but allows one to recognize a deterministic
self-organizational structure in the series (Barabasi and
Albert, 1999). The frequency distribution of epidemic
sizes over time can bring out the topological structure of
the contact network that caused the epidemics. In other
words, the structure of the interactive network of
contacts, when fit to an IPL distribution function, can
explain the type of propagation and the size of
epidemics in the population over time (Barabasi and
Bonabeau, 2003; Liljeros et al., 2001). This is usually
called scaling analysis and consists in adjusting epidemic
size distributions to an IPL of the type: N(>s) = as~?,
where s is the epidemic size, N(>s) is the frequency of
epidemics of atleast size s, and a and b are parameters to
be estimated from the data.

The IPL is a hyperbolic function with no character-
istic scale, i.e. it has no natural scale, and the function
can fit extreme values of the distribution since N(>s)
decays according to b, the slope of the power law
(Schroeder, 1991). The IPL is therefore characterized by
no finite mean and an infinite variance (Bak and Chen,
1991; Barabasi and Albert, 1999; West and Shlesinger,
1990). To fix ideas, an exponential function has a
characteristic scale with well-defined (finite) moments.
The IPL is self-similar upon rescaling (scale invariance),
i.e. it involves a hierarchy of multiple scales embedded
into one another, a property that can explain why very
small epidemics co-exist with very large ones in the
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