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Cell cavities increase tortuosity in brain extracellular space
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Abstract

Brain extracellular space (ECS) forms hindered pathways for molecular diffusion in chemical signaling and drug delivery.
Hindrance is quantified by the tortuosity A; the tortuosity obtained from simulations using uniformly spaced convex cells is
significantly lower than that measured experimentally. To attempt to account for the difference in results, this study employed a
variety of ECS models based on an array of cubic cells containing open rectangular cavities that provided the ECS with dead-space
microdomains. Monte Carlo simulations demonstrated that, in such ECS models, / can equal or exceed the typical experimental
value of about 1.6. The simulations further revealed that A is relatively independent of cavity shape and the number of cavities per
cell. It mainly depends on the total ECS volume fraction «, the cavity volume fraction o, and whether the cavity is located at the
center of a cell face or formed at the junction of multiple cells. To describe the results from the different ECS models, an expression
was obtained that related 4 to «, o, and an empirical exit factor  that correlated with the ease with which a molecule could leave a

cavity and its vicinity.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Extracellular space (ECS) plays an essential role in
brain functions that span long-range chemical signaling
(Fuxe and Agnati, 1991; Agnati et al., 2000) to the
transport of therapeutic agents (Saltzman 2001). Brain
tissue is built from nerve and glial cells together with
their cellular extensions. These cells, varying greatly in
shape and size, are separated from each other by the
narrow ECS where molecules travel predominantly by
diffusion. Such diffusion encounters hindrance, quanti-
fied by the tortuosity, A = y/D/D*, with D being the free
diffusion coefficient and D being the effective diffusion
coefficient in the brain (Nicholson, 2001). Tortuosity is a
composite parameter that contains a significant geome-
trical component, although other factors, such as
interstitial viscosity, may contribute. In this paper we
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only consider the component of tortuosity that arises
purely from local geometry. For a description of the
ECS geometry, an important parameter is the volume
fraction, o, which is defined as the ratio of the ECS
volume to the total tissue volume (Nicholson, 2001).
Early measurements of brain tortuosity often in-
volved the perfusion of a radiolabeled compound into
the ventricular spaces of an anesthetized animal and
subsequent fixation of the tissue and measurement of the
profiles of radioactivity (Fenstermacher and Kaye,
1988). Today, it is more common to use the real-time
iontophoretic (RTI) method (Nicholson and Phillips,
1981) or the integrative optical imaging (I0I) method
(Nicholson and Tao, 1993). In both the RTI and 10I
techniques, substances are released from a point source
and the resulting concentration distribution is measured.
In the RTI method, the time course of the concentration
of an ion, usually tetramethylammonium (TMA "), is
recorded with an ion-selective microelectrode at a fixed
distance from the source. In the IOI method, the spatial
distribution of diffusing macromolecules labeled with a
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fluorescent dye is measured at discrete times. Using the
RTI method, A and « can be measured simultaneously.
Extensive use of these methods has shown that in most
brain regions, «~ 0.2 and 4~ 1.6 (Nicholson and
Sykova, 1998; Nicholson, 2001; Sykova, 2004).

The theoretical calculation of tortuosity from ECS
structure is a mathematical problem of a two-phase
system. This type of problem was studied by Maxwell
(1881) who derived a formula for the effective electric
conductivity of a medium containing a dilute suspension
of spheres. Maxwell’s formula may be translated into a
form suitable for diffusion problems with impermeable
spheres (Crank, 1975), and written as

D 2

D 3—u (1a)
or

N2
A= (3 . “) . (1b)

Note that the form of Maxwell’s expression, as well as
several others in the literature, depends on the definition
of the effective diffusion coefficient; see Tao and
Nicholson (2004) for further discussion.

More recently, El-Kareh et al. (1993) used homo-
genization theory to calculate D" for antibodies diffus-
ing around packed cube-shaped cells and suggested that
Eq. (1b) is a good approximation for a more general
class of un-elongated cells. Tao and Nicholson (2004)
performed Monte Carlo simulations of diffusion in the
ECS models formed by packed cubic and non-cubic cells
and concluded that the geometrical tortuosity in the
ECS surrounding uniformly spaced convex cells can be
adequately described by Maxwell’s formula (Eq. (1b))
even though the original expression was not derived for
close-packed entities. From Eq. (1b), the maximum
tortuosity in such an ECS is A(a = 0) = \/ﬁ = 1.225,
which is significantly lower than the typical experimental
value of 1 & 1.6, indicating that brain tissue cannot be
treated simply as an ensemble of uniformly spaced
convex cells.

Although Eq. (1b) is applicable to the ECS surround-
ing uniformly spaced convex cells, it does not hold for a
two-phase system in general. Brown (1955) studied the
dielectric constant of a two-phase material consisting of
particles embedded in a medium and concluded that the
dielectric constant of such a material cannot be
completely determined by the volume fraction; the
statistical properties of particle geometry also must be
taken into account. Using variational principles, Hashin
and Shtrikman (1962) determined the upper and lower
bounds of the effective magnetic permeability of two-
phase macroscopically homogeneous and isotropic
materials, showing that Maxwell’s formula is actually
the upper bound. Because of the mathematical analogy,
these theoretical results can by applied directly to

diffusion problems, so Eq. (1b) is the lower bound for
the tortuosity. Weissberg (1963) again used a variational
approach to show that, in a medium containing
randomly overlapping spheres, the tortuosity could be
much higher than the lower bound given by Eq. (1b). It
is noteworthy that these high tortuosities occur in ECS
with non-uniformly spaced cells; when the volume
fraction in such ECS diminishes, the non-uniform
spacing will form local dead-end cavities. Such dead-
end pores are known to increase tortuosity (Goodknight
et al., 1960).

Recent work on brain tissue has provided experi-
mental support for the idea that diffusing molecules are
temporarily trapped in local dead-space microdomains
before they exit into the main connected region and
continue their travel (Hrabétova et al., 2003). This has
led to the formulation of a new relation between A and o
for brain tissue with dead-space microdomains when the
width of the dead-spaces is very much less than the
dimension of a typical cell (Hrabétova et al., 2003;
Hrabe et al., 2004, Hrabétova and Nicholson, 2004):

2= dor/2) 0, (2)

where /1, is the limiting value for a vanishingly small
volume fraction, i.e. A, = 1/3/2 (Tao and Nicholson,
2004), o is the total extracellular volume fraction and o,
is the portion of « that would remain after elimination of
dead-space microdomains.

Thus, theoretical and experimental work has indi-
cated that, in an ECS with dead-space microdomains,
the tortuosity is higher than the lower bound described
by Eq. (1b). The precise geometry of the dead-spaces
was not defined in the studies of Hrabétova et al. (2003)
or Hrabe et al. (2004) other than to stipulate that their
width should be very much less than the dimension of a
typical cell. Dead-space microdomains in brain tissue
might take many forms. In this study we explored the
question of the relation between tortuosity and ECS
geometry in more depth by taking a cell with a convex
surface and forming one or more rectangular dead-end
cavities, open at one end to the ECS. These pitted cells
were assembled into 3-D arrays with suitable spacing to
provide an ECS and then the Monte Carlo method was
used to simulate diffusion in the resulting assembly.
Cavity size, shape, and number per cell would be
adjusted in order to answer the following questions: (1)
Can the experimental value of 4~ 1.6 be attained by
introducing such cavities? (2) If so, which geometrical
parameters are most important in determining A for this
model of ECS? (3) Is there a quantitative relationship
between A and these parameters for such cavities? In
order to generalize our findings we considered the whole
range of possible volume fractions 0 <« < 1 although the
range encountered in normal and ischemic brain tissue is
only 0.05<a<0.4 (Nicholson, 2001).
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