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Abstract

Metabolic response coefficients describe how variables in metabolic systems, like steady state concentrations, respond to small

changes of kinetic parameters. To extend this concept to temporal parameter fluctuations, we define spectral response coefficients

that relate Fourier components of concentrations and fluxes to Fourier components of the underlying parameters. It is also

straightforward to generalize other concepts from metabolic control theory, such as control coefficients with their summation and

connectivity theorems. The first-order response coefficients describe forced oscillations caused by small harmonic oscillations of

single parameters: they depend on the driving frequency and comprise the phases and amplitudes of the concentrations and fluxes.

Close to a Hopf bifurcation, resonance can occur: as an example, we study the spectral densities of concentration fluctuations arising

from the stochastic nature of chemical reactions. Second-order response coefficients describe how perturbations of different

frequencies interact by mode coupling, yielding higher harmonics in the metabolic response. The temporal response to small

parameter fluctuations can be computed by Fourier synthesis. For a model of glycolysis, this approximation remains fairly accurate

even for large relative fluctuations of the parameters.
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1. Introduction

Biochemical reaction networks, which implement
both metabolism and signalling in cells, are subject to
permanent perturbations. The velocities of single
chemical reactions depend on kinetic parameters like
rate constants or enzyme activities. These parameters
may fluctuate due to external changes like temperature
shifts, but also due to internal processes, for instance,
changes of cell size and energy demand that go along
with the cell cycle. Moreover, reaction rates show
stochastic fluctuations (Gillespie, 1977, 2000) which
play a role if only few molecules are present (McAdams
and Arkin, 1997; Thattai and van Oudenaarden, 2001)
as in cell signalling or in the control of gene expression.

How will the dynamics of the entire biochemical
network respond to such permanent, fluctuating pertur-
bations of the individual reaction velocities?
It is well known that shifts of the kinetic parameters

can have dramatic effects on the behaviour of metabolic
systems: at bifurcation points, the system may undergo
qualitative changes, for instance switch between statio-
narity, oscillations, and chaos. Usually, however, a
small change of the parameters will only shift a steady
state or deform a limit cycle (Demin et al., 1999;
Reijenga et al., 2002). Metabolic control analysis
(MCA) (Fell, 1992; Heinrich and Schuster, 1996;
Hofmeyer, 2001) describes how a static parameter
change will alter the system’s metabolic variables, such
as stationary metabolic concentrations or fluxes, or the
system trajectories (Ingalls and Sauro, 2003). If the
parameters are changed by a small amount, the resulting
shift of the metabolic variables is approximately
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proportional to the parameter shift, and the linear
coefficients are called the metabolic response coefficients
(Heinrich and Schuster, 1996). For larger perturbations,
a quadratic approximation involving second-order
response coefficients has been proposed (Höfer and
Heinrich, 1993).
How can we describe the effects of parameter

fluctuations in time? Demin et al. (1999) assumed that
each reaction velocity is the product of a static enzyme
concentration and an oscillatory turnover rate: the
Fourier components of the system’s oscillations were
then expanded with respect to static enzyme concentra-
tions, for fixed oscillations of the external parameters.
Along a slightly different line, Ingalls (2004) and
Liebermeister (2004) analysed how a stable system
responds to small harmonic oscillations of single
parameters. A harmonic perturbation will lead to forced
harmonic oscillations of all metabolic variables, each
with a certain amplitude and phase shift. The oscilla-
tions of parameters and system variables are related to
each other by frequency-dependent, complex functions
termed the spectral response coefficients (Liebermeister,
2004). It turns out that this generalization of MCA to
oscillatory perturbations requires only a slight modifica-
tion of the existing formulae. A thorough treatment for
linearized systems has been given in Ingalls (2004).
We extend this idea to general nonlinear systems and

define spectral response coefficients by differentiating
Fourier components of metabolic variables with respect
to the Fourier components of the parameters: the first
and second derivatives are then termed the spectral
response coefficients of first and second order. For small
parameter perturbations, the spectral response coeffi-
cients can be used to approximate the frequency
spectrum of the metabolic variables. The respective time
courses can then be obtained by Fourier synthesis. In
this article, we first review responses to static parameter
changes and linear systems with temporal parameter
perturbations. Then, the spectral response are defined in
Section 4. Section 5 is devoted to spectral control
coefficients. In the remainder, we discuss how perturba-
tions of certain frequencies can be amplified by reso-
nance. Resonance can also occur with stochastic para-
meter fluctuations, giving rise to a peak in the spectral
density of concentration fluctuations. We conclude the
article with two illustrating examples: the propagation
of perturbations along a linear reaction chain and a
model of glycolysis with oscillating energy storage.

Mathematical notation: (1) Vectors and matrices are
denoted by bold face letters. (2) If a subscript or
superscript appears twice in a formula, as in AikBkl ; it is
summed over by convention. (3) Functionals are written
with square and round brackets: if a functional h maps
the functions f 1ð�Þ; . . . ; f nð�Þ to a function g : x ! gðxÞ;
then h½f 1ð�Þ; . . . ; f nð�Þ�ðxÞ denotes gðxÞ: (4) I ¼ ðdikÞ

denotes the identity matrix, while daðoÞ :¼dðo� aÞ is

Dirac’s delta distribution. (5) Oscillations are described
by circular frequencies (Greek letters), e.g. o ¼ 2p=T ;
where T is the period. (6) If xðtÞ is a time course, then
x̂o :¼x̂ðoÞ denotes its Fourier transform at frequency o;
xð�Þ denotes the entire function, and x̂ð�Þ denotes the
Fourier transform as a function.

2. Static response coefficients

A thorough treatment of the metabolic response
coefficients can be found in Fell (1992), Heinrich and
Schuster (1996) and Hofmeyer (2001). As a reminder, let
us briefly recall some basic definitions: the metabolite
concentrations xlðtÞ in a biochemical reaction network
follow the differential equations

d

dt
xðtÞ ¼ NvðxðtÞ; pÞ; (1)

given here in vectorial form. The velocities of the
chemical reactions are given by the kinetics functions
vkðx; pÞ where the kinetic parameters are denoted by pm:
Each column of the stoichiometric matrix N contains the
stoichiometric coefficients of a chemical reaction,
describing the amounts of metabolites that are con-
sumed and produced in this reaction. If the metabolite
concentrations are constrained by conservation rela-
tions, then N does not have full row rank. In this case,
we follow (Reder, 1988) and represent the system by a
set of independent metabolites: first, we reorder N such
that its top part NR consists of a maximal set of linearly
independent rows. Then N is split into the product N ¼

LNR where NR is called the reduced stoichiometric
matrix and L is called the link matrix.
The derivatives of the reaction kinetics vk with respect

to metabolite concentrations and kinetic parameters are
called the unscaled reaction elasticities

�S
kl :¼

qvk

qxl

; �P
km :¼

qvk

qpm

;

�SS
klj :¼

q2vk

qxlqxj

; �SP
klm :¼

q2vk

qxlqpm

; �PP
kmn :¼

q2vk

qpmqpn

: (2)

The Jacobian matrix for the independent metabolites
reads M0 ¼ NR�SL: We assume that with a parameter
vector p0; the system exhibits a stable steady state sðp0Þ

fulfilling

0 ¼ Nvðsðp0Þ; p0Þ: (3)

In the following, we shall assume that the steady state
remains stable in a neighbourhood Op around the
unperturbed parameters.1 The steady state concentra-
tions and metabolic fluxes at parameters p 2 Op are
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1This is the case if the kinetics functions can be continuously

differentiated twice with respect to both concentrations and para-

meters.
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