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Abstract

We discuss stochastic dynamics of populations of individuals playing games. Our models possess two evolutionarily stable

strategies: an efficient one, where a population is in a state with the maximal payoff (fitness) and a risk-dominant one, where players

are averse to risks. We assume that individuals play with randomly chosen opponents (they do not play against average strategies as

in the standard replicator dynamics). We show that the long-run behavior of a population depends on its size and the mutation level.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The long-run behavior of interacting individuals can
often be described within game-theoretic models. The
basic notion here is that of a Nash equilibrium. This is a
state of population—an assignment of strategies to
players—such that no player, for fixed strategies of his
opponents, has an incentive to deviate from his current
strategy; the change can only diminish his payoff. Nash
equilibrium is supposed to be a result of decisions of
rational players. Maynard Smith (1974, 1982) has
refined this concept of equilibrium to include the
stability of Nash equilibria against mutants. He
introduced the fundamental notion of an evolutionarily
stable strategy. If everybody plays such a strategy, then
the small number of mutants playing a different
strategy is eliminated from the population. The
dynamical interpretation of the evolutionarily stable
strategy was later provided by several authors
(Taylor and Jonker, 1978; Hofbauer et al., 1979;
Zeeman, 1981). They proposed a system of differential

or difference equations, the so-called replicator equa-
tions, which describe the time evolution of frequencies
of strategies. It is known that any evolutionarily
stable strategy is an asymptotically stable stationary
point of such dynamics (Hofbauer and Sigmund, 1988;
Weibull, 1997).

Here we will discuss a stochastic adaptation dynamics
of a population of players interacting in discrete
moments of time. We will analyse two-player games
with two strategies and two evolutionarily stable
strategies. The efficient strategy (also called payoff
dominant) when played by the whole population results
in its highest possible payoff (fitness). The risk-dominant
one is played by individuals averse to risks. The strategy
is risk dominant if it has a higher expected payoff
against a player playing both strategies with equal
probabilities. We will address the problem of equili-
brium selection–a strategy which will be played in the
long run with a high frequency.

We will review two models of adaptive dynamics of a
population of a fixed number of individuals. In both of
them, the selection part of the dynamics ensures that if
the mean payoff of a given strategy at the time t is bigger
than the mean payoff of the other one, then the number
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of individuals playing the given strategy should increase
in t þ 1: In the first model, introduced by Kandori et al.
(1993), one assumes (as in the standard replicator
dynamics) that individuals receive average payoffs with
respect to all possible opponents—they play against the
average strategy. In the second model, introduced by
Robson and Vega-Redondo (1996), at any moment of
time, individuals play only one game with randomly
chosen opponents. In both models, players may
mutate with a small probability; hence the
population may move against a selection pressure. To
describe the long-run behavior of such stochastic
dynamics, Foster and Young (1990) introduced a
concept of stochastic stability. A configuration of a
system is stochastically stable if it has a positive
probability in the stationary state of the above
dynamics in the limit of no mutations. It means that
in the long run we observe it with a positive frequency.
Kandori et al. (1993) showed that in their model, the
risk-dominant strategy is stochastically stable—if the
mutation level is small enough we observe it in the long
run with the frequency close to one. In the model of
Robson and Vega-Redondo (1996), the efficient strategy
is stochastically stable. It is one of the very few models
in which an efficient strategy is stochastically stable in
the presence of a risk-dominant one. The population
evolves in the long run to a state with the maximal
fitness.

The main goal of our paper is to investigate the effect
of the number of players on the long-run behavior of the
Robson–Vega-Redondo model. We will discuss parallel
and sequential dynamics, and the one, where each
individual enjoys each period a revision opportunity
with some independent probability. We will show that in
the last two dynamics, for any arbitrarily low but a fixed
level of mutations, if the number of players is sufficiently
big, a risk-dominant strategy is played in the long run
with a frequency close to one—a stochastically stable
efficient strategy is observed with a very low frequency.
It means that when the number of players increases, the
population undergoes a transition between an efficient
payoff-dominant equilibrium and a risk-dominant one.
We will also show that for some range of payoff
parameters, stochastic stability itself depends on the
number of players. If the number of players is below a
certain value (which may be arbitrarily large), then a
risk-dominant strategy is stochastically stable. An
efficient strategy becomes stochastically stable only if n

is large enough, as proved by Robson and Vega-
Redondo (1996).

In Section 2, we introduce Kandori–Mailath–Rob
and Robson–Vega-Redondo models and review
their main properties. In Section 3, we analyse the
Robson–Vega-Redondo model in the limit of the infinite
number of players and show our main results. Discus-
sion follows in Section 4.

2. Models of adaptive dynamics with mutations

We will consider a finite population of n individuals
who have at their disposal one of the two strategies: A

and B. At every discrete moment of time, t ¼ 1; 2; . . . ;
they are randomly paired (we assume that n is even) to
play a two-player symmetric game with payoffs given by
the following matrix:

U ¼

A B

A a b

B c d

where the ij entry, i; j ¼ A;B; is the payoff of the first
(row) player when he plays the strategy i and the second
(column) player plays the strategy j. We assume that
both players are the same and hence payoffs of the
column player are given by the matrix transposed to U;
such games are called symmetric.

We assume that a4c and d4b; therefore, both A and
B are evolutionarily stable strategies, and a þ boc þ d;
so the strategy B has a higher expected payoff against a
player playing both strategies with the probability 1

2
: We

say that B risk dominates the strategy A (the notion of
the risk-dominance was introduced and thoroughly
studied by Harsányi and Selten (1988)). We also assume
that a4d; hence we have a selection problem of
choosing between the risk-dominant B and the so-called
payoff-dominant or efficient strategy A.

At every discrete moment of time t, the state of our
population is described by the number of individuals, zt;
playing A. Formally, by the state space we mean the set

O ¼ fz; 0pzpng:

Now we will describe the dynamics of our system. It
consists of two components: selection and mutation.
The selection mechanism ensures that if the mean payoff
of a given strategy, piðztÞ; i ¼ A;B; at the time t is bigger
than the mean payoff of the other one, then the number
of individuals playing the given strategy should increase
in t þ 1: In their paper, Kandori et al. (1993) write

pAðztÞ ¼
aðzt � 1Þ þ bðn � ztÞ

n � 1
;

pBðztÞ ¼
czt þ dðn � zt � 1Þ

n � 1
; (2.1)

provided 0ozton:
It means that in every time step, players are paired

infinitely many times to play the game or equivalently,
each player plays with every other player and his payoff
is the sum of corresponding payoffs. This model may be
therefore considered as an analog of replicator dynamics
for populations with fixed numbers of players.
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