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Abstract

Integer lattices are important theoretical landscapes for studying the consequences of dispersal and spatial population structure,
but convenient dispersal kernels able to represent important features of dispersal in nature have been lacking for lattices. Because
leptokurtic (centrally peaked and long-tailed) kernels are common in nature and have important effects in models, of particular
interest are families of dispersal kernels in which the degree of leptokurtosis can be varied parametrically. Here we develop families
of kernels on integer lattices with several important properties. The degree of leptokurtosis can be varied parametrically from near 0
(the Gaussian value) to infinity. These kernels are all asymptotically radially symmetric. (Exact radial symmetry is impossible on
lattices except in one dimension.) They have separate parameters for shape and scale, and their lower order moments and Fourier
transforms are given by simple formulae. In most cases, the kernel families that we develop are closed under convolution so that
multiple steps of a kernel remain within the same family. Included in these families are kernels with asymptotic power function tails,
which have provided good fits to some observations from nature. These kernel families are constructed by randomizing convolutions
of stepping-stone kernels and have interpretations in terms of population heterogeneity and heterogeneous physical processes.
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1. Introduction

Spatially explicit models are of increasing importance
in population biology, especially in ecology where such
models are relatively recent (Dieckmann et al., 2000).
Key questions concern the patterning of organisms in
space (Levin, 1992), the relationship of the patterning of
organisms to patterns in the environment (Rough-
garden, 1978), and the rate and pattern of spread of a
species or allele across a landscape (Kinezaki et al.,
2003; Lewis and Pacala, 2000). How organisms become
patterned in space is of intrinsic interest (Klausmeier,
1999; Levin, 1992), but such patterns may also be used
to draw conclusions about underlying processes. For
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example, spatial patterns may help distinguish different
mechanisms of species coexistence (Bolker et al., 2003),
or indicate dispersal distances (Ouborg et al., 1999).
Spatial patterns potentially affect other processes. They
may change the nature and outcomes of species
interactions (Kareiva and Wennergren, 1995), poten-
tially promoting coexistence of competitors (Bolker and
Pacala, 1999; Hassell et al., 1994; Murrell and Law,
2003; Snyder and Chesson, 2003) or stabilizing host—
parasitoid and predator—prey relationships (Briggs and
Hoopes, 2004; Comins et al., 1992; De Roos et al.,
1998).

Spatially explicit models inevitably require the use of
functions called kernels, which describe dispersal in
space (Snyder and Chesson, 2003) or represent interac-
tions between individuals as functions of their distance
apart (Bolker and Pacala, 1999; Snyder and Chesson,
2004). Our concern here is with dispersal kernels. In
discrete time, a dispersal kernel defines for each spatial
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location the probability distribution of places dispersed
from that location in one unit of time. The variance of
this distribution defines the spatial scale of dispersal, but
also important is kurtosis, which reflects the shape of the
distribution. In nature, leptokurtosis is common, that is,
dispersal kernels are often observed to have a sharp
peak at the point of origin and a long tail. They are thus
far from the Gaussian (normal) distributions often used
in modeling. Of most importance, leptokurtosis has
been shown to greatly increase the rate of spread of an
invading organism or allele, and has been hypothesized
to explain the faster than expected rates of spread
sometimes found in nature (Cain et al., 1998; Kot et al.,
1996; Lewis and Pacala, 2000). Moreover, recent
modeling studies show that dispersal kurtosis may have
important repercussions for the dynamics of spatial
host—parasitoid interactions (Wilson et al., 1999) and
disease (Brown and Bolker, 2004). Finally, leptokurtic
models are of value in estimating dispersal character-
istics from field data, giving greater precision when
kurtosis is appropriately modeled (Clark et al., 1999). It
is only recently, however, that suitable families of
dispersal kernels, allowing broad ranges of kurtosis,
have been in use. Hence, investigations of the full
realistic range of kurtosis, including the extremes
sometimes observed, are just beginning. This article
facilitates this endeavor by providing new families of
dispersal kernels for discrete space and time that allow
exploration of the effects of kurtosis ranging from the
Gaussian value to infinity.

In spatially explicit models, space can be represented
as discrete or continuous, but integer lattices in one or
two dimensions have advantages for many problems
(Snyder and Chesson, 2003; Thomson and Ellner, 2003).
However, models of dispersal on integer lattices are not
well developed. The earliest integer-lattice models use
stepping-stone dispersal: in one unit of time, only
nearest neighbors of a lattice point are accessible
(Kimura and Weiss, 1964; Malécot, 1969). Such models
are useful for qualitative assessment of the effects of
localized dispersal (Barton et al., 2002). Quantitative
effects, and especially questions about the shape of the
dispersal kernel, as discussed above, demand more
sophisticated treatments. However, there has been very
little development in the statistical literature of suitable
probability distributions on integer lattices. Indeed,
there is a need for parametric families of probability
distributions on integer lattices in which the degree of
kurtosis is a parameter so that the effects of leptokurtic
dispersal can be studied in models.

Most discrete probability distributions of concern to
statisticians are restricted to the nonnegative integers
(Johnson et al., 1992). As a consequence, dispersal is
often modeled by discretizing distributions on contin-
uous Euclidean space for use on a lattice (e.g. Higgins
and Richardson, 1999; Ibrahim et al., 1996). However,

theory for the original continuous distributions does not
apply to discretizations. Indeed, such features as
convolutions, moments, and the relationships between
them, transfer at best approximately to discretizations,
and may be especially misleading for cases where the
median dispersal distance is only a few lattice points.
Similar difficulties arise with the common approach of
using a probability distribution for distance dispersed to
define the probabilities of dispersing to multidimen-
sional lattice points regardless of direction (e.g. Levin
and Kerster, 1975; Rousset, 2000).

We develop here a class of integer lattice distributions
with a special focus on their applications to modeling
dispersal. These distributions are designed to be
simulated readily, with properties that are easy to define
and control. We provide several families of such
distributions defining dispersal kernels in any number
of dimensions, although serious applications in popula-
tion biology rarely go beyond two. These families are
defined by time randomizations of convolutions of
stepping stone kernels. A counterpart of this technique
was recently applied by Yamamura (2002) to create a
class of leptokurtic distributions for modeling dispersal
in continuous space. For the most part, the families that
we derive preserve convolutions, and so multiple
dispersal steps of a kernel remain in the same family.
The moments of these kernels have an elegant simplicity
of interpretation, and their Fourier transforms have
compact forms. Calculation of the probabilities for these
distributions, i.e. calculation of the kernel itself, is often
more complex, but robust numerical techniques are
available in general. We build these distributions from
stepping-stone distributions as the basic elements. In
general, however, they have infinite tails and their
properties vary from discrete approximation of multi-
variate normality to strong leptokurtosis suitable for
representing rare long-distance dispersal.

To facilitate understanding, a list of notation is
provided as Table 1.

2. Foundations

Given a probability mass function K(x) = P(X = x),
for some random variable X = (X, X»,...,X4) on the
d-dimensional integer lattice (Z%,x € Z9), a dispersal
kernel can be defined as the function of two variables
K(y — x). This function gives the probability of disper-
sing in one unit of time from lattice point x to lattice
point y. Such kernels are translationally invariant
because the dispersal probabilities depend only on the
displacement y — X, not separately on the point of origin
x. Because of the direct relationship between K(x) and
the kernel K(y — x) derived from it, we refer to K(x) as
the kernel. Kernels are commonly chosen with further
symmetry properties. In continuous space, radially
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