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Abstract

The stability of predator–prey models, in the context of exploitation of renewable resources, subject to threshold policies (TP) is

studied in this paper using the idea of backstepping and control Liapunov functions (CLF) well known in control theory, as well as

the concept of virtual equilibria. TPs are defined and analysed for different types of one and two species predator–prey models. The

models studied are the single species Noy-Meir herbivore-vegetation model, in a grazing management context, as well as the

Rosenzweig–MacArthur two species predator–prey model, in a fishery management context. TPs are shown to be versatile and

useful in managing renewable resources, being simple to design and implement, and also yielding advantages in situations of

overexploitation.
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1. Introduction

Grazing management refers to the manipulation of
livestock to systematically control periods of grazing
and no grazing (usually termed deferment or rest). The
primary objectives are to control the effects of grazing at
the individual plant level in order to protect soil
watershed and improve livestock production (Heitsch-
midt and Stuth, 1991). In grazing management, it is
possible to control the consumption of the herbivore
(predator) by allowing or not allowing grazing. A
mathematical model that is much used in the study of

herbivore grazing was proposed by Noy-Meir (1975)
and will be examined in this paper. The Noy-Meir model
describes vegetation growth under the assumption that
it is subject to the action of a constant herbivore
population. In common with most other single species
models in the literature, it has a logistic growth term,
and a consumption term that models the action of the
herbivore.
In the grazing management context, when a scheme

such as short duration or deferred rotation is used, it
means that the consumption term is being switched on
(when grazing of a particular paddock is allowed) and
off (when the livestock is fenced out of the paddock)
(Heitschmidt and Stuth, 1991). Another possibility
arises in grazing models of coral reefs which can flip
between coral- and algae-dominated states. It has been
postulated that the interplay between herbivorous fish
and algae is an important factor in determining the
flipping dynamics, since removal of the fish might induce
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an algae-dominated state. Such a proposal, based on the
Noy–Meir model, of herbivore fish–algae dynamics, has
been made in Crépin (2002).
Similarly, a fishing policy refers to the management of

fish populations by systematically controlling the
period, intensity and type of fishing. Once again, the
primary objectives are to maximize productivity, with-
out depleting or driving the stocks to extinction. In a
fishery model, where two species are modelled and
fishery of the prey species is of interest, it is generally not
possible to control the consumption of the prey by the
predator species, referred to as endogenous consumption,
but control may be exercised by the removal (fishing) of
a certain quantity of the prey species, which we will refer
to as exogenous consumption. A mathematical model
that is much used in the study of fishery is called the
Gordon–Schaefer model (Clark, 1976, 1985; Imeson
et al., 2002) and its variants (Collie and Spencer, 1993)
are also studied in this paper. The Gordon–Schaefer
model proposes a logistic growth term for the fish.
Crépin (2002) proposes, in addition, an endogenous
predation term (corresponding to herbivorous fish
prey eaten by fish predators, whose population is
assumed to be constant in time, thus entering as a
predation rate), and a removal rate (corresponding to
the removal of herbivorous fish by an exogenous agent
(man)). Thus it is often true that is possible to introduce
an exogenous control into either the prey or predator
dynamics.
Given the complexity of ecosystem dynamics, it is

only feasible to use very simple control actions. A
commonly used and implementable control is to allow
removal of the predator, when its density exceeds a
specified threshold level—a good example of this is in a
harvesting or fishing context (Collie and Spencer, 1993;
Quinn and Deriso, 2000).
This paper is concerned with the introduction of such

an exogenous control into one- and two-dimensional
population dynamical system models. The overall
objective is to develop a systematic way of designing
simple implementable controls that drive the dynamical
systems to a desired globally stable equilibrium, in
which a desired population level is maintained and, in
the case of two population models, coexistence of
predator and prey population models should result,
i.e. the proposed control must avoid the extinction of
the species, even under certain conditions of over-
exploitation of the species.
This objective is attained by using the control

Liapunov function (CLF) approach from the control
literature (Sontag, 1989) in order to choose the control.
The objective of keeping the control as simple as
possible so as to be implementable is achieved by using
on–off controls that are activated when a certain
threshold population density increases beyond a given
level. This threshold population density may be a

population density itself or derived in some simple
manner from these densities. The choice and positioning
of the threshold is guided by the CLF as well as the
concept of real and virtual equilibria introduced in
Costa et al. (2000). Finally, in the case of two population
predator–prey models, the simplicity of the control is
achieved by introducing the control into only one of the
species dynamics, and, in this case, inspired by the
method of backstepping (Sepulchre et al., 1997), a CLF
is used to design the control. This combination of
concepts—real and virtual equilibria, CLFs, on–off
control and backstepping—to introduce a globally
stable equilibrium into a nonlinear dynamical popula-
tion model is novel in this context and is one of the
contributions of the paper. Finally, it is shown that the
type of control considered in this paper has advantages
in situations where overexploitation of the populations
occurs, which is important in the resource management
context.

1.1. Previous work and preliminaries

In the context of fishing management, Collie and
Spencer (1993) introduced a so-called threshold policy

(TP), which is intermediate between the well-known
constant escapement and constant harvest rate policies
(Quinn and Deriso, 2000). A TP is defined as follows: if
abundance is below the threshold level, there is no
harvest; above the threshold, a constant harvest rate is
applied. The TP is also referred to as an on–off control
and is a special and simple case of variable structure
control in the control literature (Utkin, 1978, 1992;
Filippov, 1988; Edwards and Spurgeon, 1998).
We establish a standard notation for a TP (see Fig. 1),

denoting it as the function fðtÞ defined as follows:

fðtÞ ¼
1 if t40;

0 if to0;

(
(1)

where t is the threshold that should be chosen
adequately, depending on the problem to be solved.
The case of t exactly equal to zero, for which the value
of f is not defined in (1) is discussed further below in
Definition 2.
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Fig. 1. Threshold policy.
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