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Abstract

In this paper, the numerical errors associated with the finite difference solutions of two-dimensional advection–dispersion equa-

tion with linear sorption are obtained from a Taylor analysis and are removed from numerical solution. The error expressions are

based on a general form of the corresponding difference equation. The variation of these numerical truncation errors is presented as

a function of Peclet and Courant numbers in X and Y direction, a Sink/Source dimensionless number and new form of Peclet and

Courant numbers in X–Y plane. It is shown that the Crank–Nicolson method is the most accurate scheme based on the truncation

error analysis. The effects of these truncation errors on the numerical solution of a two-dimensional advection–dispersion equation

with a first-order reaction or degradation are demonstrated by comparison with an analytical solution for predicting contaminant

plume distribution in uniform flow field. Considering computational efficiency, an alternating direction implicit method is used for

the numerical solution of governing equation. The results show that removing these errors improves numerical result and reduces

differences between numerical and analytical solution.
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1. Introduction

Groundwater quality varies due to the chemical, geo-

chemical, and biochemical reactions of the pollutants in

the subsurface flow systems. To reliably predict the fate

of contaminant transport in groundwater, an accurate

numerical modeling is required.

There aremany numerical investigations of advection–

dispersion equation (transport equation). However, a few
studies have been devoted to the more general advection–

dispersion–reaction equation (ADRE). The numerical

solution of ADRE has its complexity because of the reac-

tion term. The reaction term accounts for degradation or

adsorption, this term can cause numerical instability

problems. Ongoing research effort in this area reflects dif-
ficulty in solving the ADE by numerical methods for the

cases such as advection-dominated problems, where the

hyperbolic behavior of this equation is problematic espe-

cially in multi-dimensional ADE [1,2]. Also the solution

of the transport equation (for advection-dominated prob-

lems), bymany standard numerical procedures is plagued

to some degree by two types of numerical problems. The

first type is numerical dispersion due to the discretization
of the governing equation. The second type of numerical

problem is artificial oscillation [3].

Several approaches have been developed to improve

the numerical accuracy. Among the numerical methods

for solving ADRE, finite difference method (FDM)

seems to be more popular for the ease of implementation

and their relative simplicity [4–7]. However, finite

element method (FEM) can easier handle complex
geometries. There have been extensive debates as to
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whether FEM or FDM is preferable in groundwater

modeling [11]. Some investigations showed that FDM

introduces larger numerical errors than FEM [1,8–10].

Mixed Eulerian–Lagrangian methods are among the

approaches that are used for eliminating numerical dis-

persion. MT3D code applies a mixed Eulerian–Lagrang-

ian approach to solve the ADRE. This approach

combines the strength of the method of characteristic to
eliminate the numerical dispersion and the computational

efficiency of the modified method of characteristics [3,12].

High-order finite difference methods are techniques

that are used for a better accuracy and to eliminate

the numerical dispersion [13–15]. Total-variation-dimin-

ishing (TVD) methods can be placed in this category. A

large number of TVD schemes for solving advective

transport equation can be found in the literature [11].
In spite of the promising performance of the high-order

numerical methods, these schemes have their difficulties

for programming and code implementing.

Although there are many studies that have applied

FDM for two-dimensional ADE [7,11,16–18], the

authors are not aware of any work on the truncation

errors analysis of the FDM for the two-dimensional

ADRE, except the recent work of the authors about ex-
plicit FDM [19].

Approximating differential equations in finite differ-

encemodels by discretization introduces numerical errors

(truncation error). In the case of transport equations like

the advection–dispersion equation, numerical dispersion

is a well-known consequence of truncation error [3,11,

20,21]. Lantz [20] and Chaudhari [21] quantified numeri-

cal dispersion as a second-order error through examina-

tion of the truncated Taylor series approximation of an

explicit FD solution of one-dimensional ADE. The effect

of numerical dispersion has been considered in numerical

studies by many researchers [1,22–27]. Notodarmojo

et al. [24] presented a numerical model for phosphorus

transport in soils and ground water with two-consecutive

reactions. The model uses an explicit FD scheme and

takes into account the influence of numerical dispersion
although the effects of zero- and first-order truncation er-

rors are neglected. Noye et al. discussed on the modified

equivalent partial differential equation (MEPDE) trunca-

tion errors and estimated the accuracy of FDMs based on

artificial damping and phase shifting property. They also

compared amplitude response and relative wave speed

obtained in a series form using the coefficients ofMEPDE

to examine the accuracy of different FDMs [26,27].
The numerical dispersion is the only truncation error

for the case of advection–dispersion equation. However

for the more general transport equation (e.g., with

reaction) other truncation errors are also introduced

[4,19,28,29].

The primary objectives of this paper are to analysis

the errors of the general form of FDM for two-

dimensional ADRE. Errors are expressed in the form
of dimensionless numbers. These truncation errors are

compared for different schemes with respect to dimen-

sionless numbers. In the end, it has been shown that

removing these numerical errors improves the results

of FD solution of ADRE and leads to a more accurate

numerical solution. Consideration computational effi-

ciency, an alternating direction implicit (ADI) method

is used. ADI method has a second-order accuracy and

Nomenclature

C solute concentrations [ML�3]

C0 solute concentration in injected fluid [ML�3]
Crxx principal-term of Courant number [–]

Cryy principal-term of Courant number [–]

Crxy cross-term of Courant number [–]

Dxx principal-term of dispersion coefficient

[L2T�1]

Dyy principal-term of dispersion coefficient

[L2T�1]

Dxy cross-term of dispersion coefficient [L2T�1]
Dnumxx principal-term of numerical dispersion coeffi-

cient [L2T�1]

Dnumyy principal-term of numerical dispersion coeffi-

cient [L2T�1]

Dnumxy cross-term of numerical dispersion coefficient

[L2T�1]

erfc complimentary error function [–]

exp exponential [–]
k first-order reaction rate coefficient [T�1]

knum numerical first-order reaction rate coefficient

[T�1]
Pexx principal-term of Peclet number [–]

Pexy cross-term of Peclet number [–]

Peyy principal-term of Peclet number [–]

Sr Sink/Source number [–]

t time [T]

v uniform flow velocity [LT�1]

vx velocity component in X direction [LT�1]

vy velocity component in Y direction [LT�1]
vnumx numerical velocity component in X direction

[LT�1]

vnumy numerical velocity component in Y direction

[LT�1]

Dx length increment in X direction [L]

Dy length increment in Y direction [L]

Dt time increment [T]P
summation [–]

ai spatial weighting parameter in i direction [–]
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