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Abstract

Eulerian–Lagrangian localized adjoint methods (ELLAMs) provide a general approach to the solution of advection-dominated

advection–diffusion equations allowing large time steps while maintaining good accuracy. Moreover, the methods can treat system-

atically any type of boundary condition and are mass conservative. However, all ELLAMs developed so far suffer from non-physical

oscillations and are usually implemented on structured grids. In this paper, we propose a finite volume ELLAM which incorporates

a novel correction step rendering the method monotone while maintaining conservation of mass. The method has been implemented

on fully unstructured meshes in two space dimensions. Numerical results demonstrate the applicability of the method for problems

with highly non-uniform flow fields arising from heterogeneous porous media.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite many years of research, the efficient and accu-

rate solution of the advection–dominated advection–dif-

fusion equation is still a formidable task. Among the

more recent developments in the field is the Eulerian–

Lagrangian localized adjoint method (ELLAM) intro-

duced in [1]. ELLAMs can be cast in the form of (discon-
tinuous in time) space–time Petrov–Galerkin finite

element methods where the test functions locally solve

the homogeneous adjoint equation of the advective part.

For problems without reaction or adsorption term that

are treated in this paper, the test functions are constant

along the characteristics. ELLAM treats the advection

part in a Lagrangian and the diffusion part in an Eulerian

way thus combining the best of both worlds with the aim

of allowing large time-steps to be taken without sacrific-

ing accuracy. In contrast to one of its precursors, the

modified method of characteristics (MMOC) introduced

in [2], it allows a consistent treatment of all types of

boundary conditions through a weak formulation. The
current state-of-the-art of the method is collected in [3].

ELLAM schemes were implemented in different space

dimensions with varying test and trial functions [3] but

still share a significant drawback: they are not guaran-

teed to produce monotone solutions. For many practical

purposes, especially when a reaction term is coupled

with the transport, this property is mandatory. In the

following we will shortly discuss the main reasons why
these non-physical oscillations occur, the in-depth dis-

cussion is contained in Section 4. We will focus on zero-

and first-order test and trial functions, however the

reasoning can be applied to higher-order approaches
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as well. As is common in literature, we will use the term

finite volume ELLAM (FVELLAM) for schemes with

piecewise constant test functions.

One major reason for the oscillations is that for non-

orthogonal trial functions with overlapping support, e.g.

the piecewise (bi-)linears, the mass matrix is non-diago-
nal. As is well known from standard finite elements this

results in oscillations for non-smooth right-hand sides.

The standard approach for this problem is to use lump-

ing which fixes the oscillations but increases numerical

diffusion. Binning and Celia compared normal ELLAM

and FVELLAM with and without lumping for some 3D

examples in [4]. Russell and Binning [5] proposed a

selective lumping scheme which adds the minimum
amount of numerical diffusion to the mass matrix so

that for a given right-hand side no oscillations will

occur. This approach was shown to work for a 1D

ELLAM, however generalization for higher dimensions

or unstructured grids will require some effort due to cur-

rent assumptions on the matrix shape and properties.

The second reason for oscillations is the error made

when tracking the mass along the characteristics to inte-
grate on the old time level. Backward tracking, which

uses a quadrature defined on the new time level, does

not suffer from this integration error but cannot guaran-

tee global mass conservation. With forward tracking the

quadrature points are defined on the old time level but

the quadrature weights will not necessarily sum up to

the correct volume for each grid element on the new

time level. For piecewise linear test functions and any
other test functions with overlapping support this effect

is reduced because the tracked mass is spread over sev-

eral neighboring nodes. This however leads, especially

for a lumped mass matrix, to numerical diffusion.

FVELLAMs on the other hand are less diffusive but

very susceptible to this integration error due to the test

function discontinuities. A simple fix for this problem

is to increase the number of quadrature points but this
has a severe impact on the computational efficiency. A

different approach is to smooth out the discontinuous

test functions for the right-hand side integral: the

approximate test functions proposed by Healy and Rus-

sell [6] change shape between linear test functions for

coarse quadratures and constant test functions with a

small linear overlap to the neighboring function for finer

quadratures. Together with strategic space integration
points (SSIP) which are backtracked from the new time

level to be included in the quadrature on the old time

level the method is reported to minimize oscillations

but does not provably remove them.

A different approach to reduce the integration error

after characteristic tracking is to change the grid on

the old time level. For each grid element on the new time

level an approximation of the backtracked image with
the same volume but not necessarily the correct shape

can be constructed. This ensures a local mass conserva-

tion in the transport step. A work by Chilakapati [7]

shows a way to compute this modified grid during the

flow computation.

In this paper, we will propose a FVELLAM scheme

using consistent lumping on the left- and right-hand side

of the equation so that non-smooth solutions can be
modeled appropriately. As this method is clearly sensitive

to the aforementioned integration error we will further

present a novel postprocessing scheme which, for a given

quadrature and arbitrary concentration distribution,

constructs a monotone solution. A further advantage of

the postprocessing scheme is that it is purely algebraic

and therefore independent of the underlying mesh.

ELLAMs are very attractive for the solution of con-
taminant transport problems in highly heterogeneous

porous media with their resulting highly non-uniform

velocity fields. Traditional Eulerian methods, even high

resolution schemes [8], produce a large amount of

numerical diffusion in this case. In one of our examples

we show that the proposed ELLAM is clearly superior

even to state-of-the-art higher-order discontinuous

Galerkin methods [9,10] for this type of problem.
This paper is organized as follows. First, we describe

the continuous problem in Section 2. Section 3 presents

a general framework for ELLAMs and applies this frame-

work to yield two formulations of ELLAM, one based on

the vertex-centered finite volume scheme, the other based

on the higher-order discontinuous Galerkin method. Then

Section 4 concentrates on the numerical evaluation of crit-

ical integrals in the scheme and Section 5 introduces the
new postprocessing scheme to ensure monotonicity of

the solution. Finally the numerical results with the pro-

posed techniques are shown in Section 6.

2. Continuous model problem

Let N = X · T be a space–time domain with X � R2

the spatial domain and T = (0,Tend) a time interval.

We consider the advection–diffusion equation

oðRðx; tÞCÞ
ot

þr � jðx; tÞ ¼ r;

jðx; tÞ ¼ vðx; tÞC �Dðx; tÞrC in N ð1Þ

for the unknown concentration C : N! R where

Dðx; tÞ is the hydrodynamic dispersion tensor, v(x, t) is

a given divergence free velocity field, R(x, t) is the retar-

dation factor and r(x, t) is the source term. We comment
on the use of numerically computed velocity fields

below. The space–time boundary can be partitioned into

inflow and outflow boundary

PðIÞ ¼ fðx; tÞ 2 oX� T : vðx; tÞ � n 6 0g;
PðOÞ ¼ ðoX� T ÞnPðIÞ. ð2Þ

Eq. (1) is augmented with the following boundary
conditions
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