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Abstract

An equation describing flow in an open channel with obstacles is derived, following the conservation of momentum approach

used by Bélanger and St. Venant. When the obstacles are all submerged the result yields the Darcy–Weisbach equation for turbulent

flow in pipes and open channels. When the obstacles are only partially submerged the result leads to the governing equation in a

porous medium. If the flow is turbulent the square of the velocity is proportional to the hydraulic gradient and if the flow is laminar,

which is the usual case, the velocity is proportional to the hydraulic gradient. This last result is in agreement with Darcy�s law in

porous media. Thus our equation interpolates between and reduces to, the two fundamental results of Darcy. In general our equa-

tion should prove useful in practice for open flow in a channel with both submerged and emerging obstacles.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Grassed waterways are a standard means to carry sur-

face runoff while avoiding erosion [1]. A similar situation

arises with mulch and other debris in fields or channels.
Modern modeling of such flows relies on the use of the

appropriate Darcy–Weisbach equation, e.g. see [2–4],

which states that the flow velocity, V, is proportional to

the square root of the flow depth, D, and the slope, So,

which we consider to be always small in the following.

This famous formula was obtained by Darcy [5] from

his careful measurement of turbulent flows in pipes and

then extended to open channels, primarily by Darcy and

Bazin [6]. Weisbach [7] obtained the same result, hence

the joint name given to the result. Interestingly, Chézy
[8] and Du Buat [9] obtained basically the same equation

much earlier. Chézy�s work was written a few years prior

to Du Buat�s, but as an internal report only. Based on

Du Buat�s and others� experiments, Prony [10] suggested

a more general formula for pipes and open channels,

DSo ¼ aV þ bV 2; ð1Þ

with a and b constant, suggesting already that the use of

a fractional power would be slightly more accurate in

some cases [11]. However if we write
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D3Sog
m2

¼ f
DV
m

� �
; ð2Þ

where g is the acceleration of gravity and m the kinematic

viscosity, which is essentially the expression in [11], with

g added to be dimensionally correct, then we can con-

sider a number of possibilities (see also [12] for a more
complete discussion). If f is linear we obtain the well

known Poiseuille law [13] for laminar flow, whereas if

f is quadratic the Darcy–Weisbach result follows. No

function, f, will yield DSo as a function of a fractional

power of V as possibly suggested by Eq. (1).

For pipes of relatively small sections taking a func-

tion, f, proportional to (DV/m)a, was shown by Reynolds

[14] to be best with a � 1.75, i.e. less than a = 2 obtained
by Darcy–Weisbach, the latter being preferable for the

open channels which concerns us here. There is no value

of the a that would lead to Manning�s well known equa-

tion [15], but it is interesting that if we take a = 1.8, i.e.

close to Reynold�s value of 1.753, and replace So in Eq.

(2) by S0:9
o , then Manning�s result follows. That 0.9

power being unjustified, theoretically at least, it is pref-

erable to use either Darcy–Weisbach in open channel or
Reynolds in small tubes, for turbulent flow, and of

course Poiseuille for laminar flow.

Bélanger [16] considered the steady flow in an open

channel with slope So, which we take as small, and ob-

tained the fundamental result, see [11] for a thorough

discussion of Bélanger�s contribution, which can be writ-

ten as,

dD
dx

¼ So � Se

1� F 2
; ð3Þ

where F is the Froude number,

F 2 ¼ q2

gD3
¼ V 2

gD
; ð4Þ

where q = VD is the flux. Se is now called the friction

slope, such that when So = Se, dD/dx = 0 which, for in-

stance for turbulent flow must reduce to Darcy–Weis-

bach. Thus with a = 2 i.e. f = (DV/m)2 in Eq. (2) then

we obtain

D3Sog ¼ Cs

2
D2V 2; ð5Þ

Cs/2 being the constant of proportionality in Eq. (2).

When dD/dx = 0, Se = So and hence

Se ¼
CsV 2

2gD
: ð6Þ

Of course, at the time Bélanger used it Eq. (6) which
we call the Darcy–Weisbach equation, was based on Du

Buat�s results.
In the following, like Bélanger, we shall consider stea-

dy flows only, as the laws of resistance to flow, e.g.

Darcy–Weisbach, play the same role whether the flow

is steady or not. Since we are interested in the laws of

resistance to flow we can consider steady state flows only

without loss of generality. Of course generalizing Bélan-

ger�s results to unsteady flows was a fundamental contri-

bution of St. Venant [17] and Eq. (3) can then be seen as

the steady state limit of the St. Venant equations, and as
a result is often referred to him, rather than Bélanger.

In the following we shall generalize Eq. (3) when both

submerged and/or partially submerged obstacles are

present in the channel. As the density of obstacles

increases we shall obtain, in the limit, Boussinesq�s equa-
tion [18] for groundwater flow when the Dupuit–Forch-

heimer approximation holds [19], [20]. In this case the

Boussinesq equation is based on Darcy�s other funda-
mental work on flow in porous media [21].

Much of the above historical background can be

found, with additional details, in [11,22] as well as other

historical reviews.

2. Interpolation formula and discussion

We essentially follow Bélanger�s approach [11,16]

taking into account the additional resistance caused by

submerged and partially submerged obstacles. With

the presence of obstacles the volume they occupy in

the flow can be significant [3] and we call h the porosity,

i.e. the volume of water/[volume of water + volume of

partially submerged obstacles]. If we call s the shear

stress experienced by the flow, it must be balanced by
the weight of water, the momentum and the pressure, or

s ¼ qgSoDhþ qV 2h
dD
dx

� qgDh
dD
dx

; ð7Þ

where q is the density of the liquid and we replace the
stress by the friction slope, with the identity

s � qgSeD; ð8Þ

Se must take into account the soil surface and obstacles.

If there was no partially submerged obstacle, Eq. (6)

would hold with a modified Cs to take into account sub-

merged obstacles. Indeed this is the standard approach
[2–4] used even when emerging obstacles were clearly

present. Here we write separately the effect of emerging

obstacles, or,

Se ¼
V 2

2gD
Cshþ CdAð1� hÞ½ �; ð9Þ

where A represents the ratio of the frontal area of the

emerging obstacle, and the cross section of the obstacle

A ¼ 4Dd

pd2
; ð10Þ

with d the characteristic diameter of the obstacle. The

coefficients h and (1 � h) represent the proportion of

surfaces on which each stress is acting. For given
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