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Hanoi graphs and some classical numbers
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Abstract

The Hanoi graphs Hn
p model the p-pegs n-discs Tower of Hanoi problem(s). It was previously

known that Stirling numbers of the second kind and Stern’s diatomic sequence appear naturally in
the graphs Hn

p . In this note, second-order Eulerian numbers and Lah numbers are added to this list.
Considering a variant of the p-pegs n-discs problem, Catalan numbers are also encountered.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

All the time since the French number theorist Lucas invented the Tower of Hanoi (TH) in
1883, the puzzle has presented a challenge in mathematics as well as in computer science
and psychology. The classical problem consists of three pegs and is by now well-understood
(cf. [5,7] and references therein). On the other hand, as soon as there are at least four pegs,
the problem turns into a notorious open question (see [1,10,12,21] for recent results).
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The TH problem consists of p�3 pegs and n�1 discs of different sizes. A legal move
is a transfer of the topmost disc from one peg to another peg such that no disc is moved
onto a smaller one. Initially, all discs lie on one peg in small-on-large ordering, that is, in
a perfect state. The objective is to transfer all the discs from one perfect state to another
in the minimum number of legal moves. A state ( = distribution of discs on pegs) is called
regular if on every peg the discs lie in the small-on-large ordering.

The natural mathematical object to model the TH problem(s) are the graphs defined as
follows. Let p�1, n�1, then the Hanoi graph Hn

p has all regular states of the p-pegs
n-discs problem, two states being adjacent whenever one is obtained from the other by a
legal move. Note that for any n�1, Hn

1 is the one-vertex graph K1. If we have two pegs,
only the smallest disc can be moved in any regular state. Hence Hn

2 is the disjoint union of
2n−1 copies of the complete graph on two vertices K2.

The graphs Hn
p were studied from the graph theory point of view in [9] where it is

proved that they are Hamiltonian and that the only planar Hanoi graphs, besides the trivial
cases Hn

1 and Hn
2 , are H 1

4 , H 2
4 , and Hn

3 , n�1. In this note we study these graphs from the
combinatorial counting point of view. More precisely, we demonstrate that many classical
numbers appear naturally in the Hanoi graphs.

For a graph G let V (G) be the set of its vertices and E(G) the set of its edges. It is easy
to see that |V (Hn

p)| = pn and it has been shown in [11] that for p�3,
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denote Stirling numbers of the second kind and pk = p(p − 1) · · · (p − k + 1).

Moreover, it is straightforward to verify that the formula holds for p = 1 and p = 2 as well.
So Stirling numbers of the second kind present the first instance of classical numbers that
appear in Hanoi graphs.

In the next section we count some vertex subsets of Hanoi graphs and among others detect
the second-order Euler numbers and the Lah numbers. Then, in Section 3, we consider the
n-in-a-row TH problem and relate it with the Catalan numbers. We conclude by recalling
that Stern’s diatomic sequence appears in the Hanoi graphs as well.

2. Vertex subsets of Hanoi graphs

Consider the TH problem with p�2 pegs numbered 1, 2, . . . , p and n�1 discs numbered
1, 2, . . . , n. We assume that the discs are ordered by size, disc 1 being the smallest one.
Suppose that on peg i of a regular state we have discs j, j + 1, . . . , j + k for some j �1,
and k�0. (Of course, j + k�n.) Then we say that the discs j, j + 1, . . . , j + k form a
superdisc (on peg i). In addition, we also consider an empty peg as an (empty) superdisc.
We call a regular state of the TH problem a superdisc state if the discs on every peg form
a superdisc. A vertex of Hn

p that corresponds to a superdisc state will be called a superdisc
vertex.

The term “superdisc” has been coined by Hinz in [6]. In the same paper, the term
“presumed minimum solution” was also invented to describe proposed solutions for the
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