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Abstract
We show that for a positive linear operator acting in�2 and defined from

anxn+1 + bnxn + an−1xn−1
its so-called Friedrichs and Krein extensions may be explicitly characterized by boundary conditions
asn → ∞.
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1. Introduction

We consider an infinite Jacobi matrix

J =




b0 a0 0 0 0 . . .

a0 b1 a1 0 0 . . .

0 a1 b2 a2 0 . . .

0 0 a2 b3 a3
...

...
. . .

. . .
. . .


 ,

wherean >0 andbn ∈ R for n�0. Given a sequencex = (xn) of complex numbers,Jx is
again a sequence of complex numbers. If we seta−1 = 0,

(Jx)n = an−1xn−1 + bnxn + anxn+1, n�0.

In order to define operators from thematrixJ , we introduce the Hilbert space�2 of complex
sequencesx = (xn) with

∑ |xn|2<∞. As usual, we denote by(·, ·) the inner product

(x, y) =
∞∑
0

xnyn, x, y ∈ �2.

The maximal operatorTmax is defined by

(Tmaxx)n = (Jx)n, n�0

on the domain

D := D(Tmax) = {x ∈ �2 : Jx ∈ �2}.
The minimal operatorTmin is the closure (in�2) of the so-called preminimal operatorT
which is the restriction ofTmax to the domain

D(T ) = {x ∈ �2 : xn = 0 for all but a finite number of values ofn}.
It is straightforward to see thatTmin is a densely defined symmetric operator and that

T ∗
min = Tmax, T ∗

max= T = Tmin.

As is well-known, the theory of Jacobi matrices is strongly connected to the theory of or-
thogonal polynomials and the moment problem on the real line (also called the Hamburger
moment problem), see e.g.[1]. In particular,Tmin is self-adjoint if and only if the corre-
sponding moment problem is determinate, i.e. has a unique solution. When� is a measure
on the real line, thenth moment of� is given by

sn =
∫

R
xn d�(x),

provided that the integral exists. Themoment problem consists of decidingwhich sequences
(sn)n�0 of real numbers are moment sequences and to which extent a positive measure is
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