

Available online at www.sciencedirect.com

Expo. Math. 23 (2005) 179-186

www.elsevier.de/exmath

On the Krein and Friedrichs extensions of a positive Jacobi operator

B. Malcolm Brown^a, Jacob S. Christiansen^{b,*}

^aDepartment of Computer Science, Cardiff University, PO Box 916, Cardiff CF 24 3XF, UK ^bDepartment of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Received 16 April 2004

Abstract

We show that for a positive linear operator acting in ℓ^2 and defined from

 $a_n x_{n+1} + b_n x_n + a_{n-1} x_{n-1}$

its so-called Friedrichs and Krein extensions may be explicitly characterized by boundary conditions as $n \to \infty$.

© 2005 Elsevier GmbH. All rights reserved.

MSC 2000: primary 39A10; 47B36; 47B25; secondary 44A60

Keywords: Unbounded Jacobi operators; Positive self-adjoint extensions; Boundary conditions; Difference equations; Minimal solution

^{*} Corresponding author.

E-mail address: stordal@math.ku.dk (J.S. Christiansen).

1. Introduction

We consider an infinite Jacobi matrix

	b_0	a_0	0	0	0)	
J =	a_0	b_1	a_1	0	0		,
	0	a_1	b_2	a_2	0		
	0	0	a_2	b_3	a_3		
	(:	÷		۰.	۰.	·)	

where $a_n > 0$ and $b_n \in \mathbb{R}$ for $n \ge 0$. Given a sequence $x = (x_n)$ of complex numbers, Jx is again a sequence of complex numbers. If we set $a_{-1} = 0$,

$$(Jx)_n = a_{n-1}x_{n-1} + b_nx_n + a_nx_{n+1}, \quad n \ge 0.$$

In order to define operators from the matrix *J*, we introduce the Hilbert space ℓ^2 of complex sequences $x = (x_n)$ with $\sum |x_n|^2 < \infty$. As usual, we denote by (\cdot, \cdot) the inner product

$$(x, y) = \sum_{0}^{\infty} x_n \overline{y_n}, \quad x, y \in \ell^2.$$

The maximal operator T_{max} is defined by

$$(T_{\max}x)_n = (Jx)_n, \quad n \ge 0$$

on the domain

$$D := D(T_{\max}) = \{ x \in \ell^2 : Jx \in \ell^2 \}.$$

The minimal operator T_{\min} is the closure (in ℓ^2) of the so-called preminimal operator T which is the restriction of T_{\max} to the domain

 $D(T) = \{x \in \ell^2 : x_n = 0 \text{ for all but a finite number of values of } n\}.$

It is straightforward to see that T_{\min} is a densely defined symmetric operator and that

$$T_{\min}^* = T_{\max}, \quad T_{\max}^* = \overline{T} = T_{\min}.$$

As is well-known, the theory of Jacobi matrices is strongly connected to the theory of orthogonal polynomials and the moment problem on the real line (also called the Hamburger moment problem), see e.g. [1]. In particular, T_{\min} is self-adjoint if and only if the corresponding moment problem is determinate, i.e. has a unique solution. When μ is a measure on the real line, the *n*th moment of μ is given by

$$s_n = \int_{\mathbb{R}} x^n \, \mathrm{d}\mu(x).$$

provided that the integral exists. The moment problem consists of deciding which sequences $(s_n)_{n \ge 0}$ of real numbers are moment sequences and to which extent a positive measure is

Download English Version:

https://daneshyari.com/en/article/9492856

Download Persian Version:

https://daneshyari.com/article/9492856

Daneshyari.com