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Abstract

If Iis anideal of a ringk, we say that idempotents lift strongly moduldf, whenever? —a € I,
there exists? = ¢ € aR (equivalentlye? = ¢ € Ra) such thate — a € I. The higher socles oR
all enjoy this property, as does the Jacobson radicilidempotents lift modulo/. Many of the
useful, basic properties of lifting moduld are shown to extend to any ideAlith strong lifting,
and analogs of the semiperfect and semiregular rings are studied. A number of examples are given
that limit possible extensions of the results.
0 2004 Elsevier Inc. All rights reserved.
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One of the most used general methods for determining the structure of & iimtp
first determine the structure of an image riRg/ where! is an ideal ofR, and then
“lift” this structure to R. This often comes down to “lifting idempotents” because many
structural features of a ring are described in terms of idempotents. The most useful choice
of the ideal in this process has been the Jacobson radieal/ (R). One reason for the
popularity ofJ is that, if idempotents lift moduld, then they lift in the following stronger
sense: Ifl is an ideal of a ringR, we say that idempotents can be lifted strongly modulo
if, whenevera? — a € I, there existg? = ¢ € aR such that — a € 1. This concept turns
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out to be left-right symmetric even if is a one-sided ideal. The notion of strong lifting
seems to be the natural requirement for ideals other fhamd the most useful properties
of lifting modulo J extend. Among others, the following theorems are proved:

Theorem. Idempotents lift strongly modulo all the higher socles of a ring.

Theorem. A ring R is an exchange ring if and only if idempotents lift strongly modulo
every right(respectively lejtideal of R.

If 1isanideal ofR, the ringR will be called/-semiperfect (respectivelirsemiregular)
if R/I is semisimple (respectively regular) and idempotents lift strongly mobulée say
that respects a right ided! if T =¢R @ S wheree? = ¢ andS C I, and we prove:

Theorem. R is I-semiregular if and only if respects every principdtespectively finitely
generatediright ideal of R.

Theorem. R is I-semiperfect if and only if respects every right ideal at.

Theorem. R is I-semiperfect if and only if(1) R contains no infinite set of orthogonal
idempotents outsidg and(2) every right ideal not contained ih contains an idempotent
notin/.

We also show that-semiregularity and -semiperfectness are inherited by related rings
in a natural way; in fact, they are Morita invariants/ifis the Jacobson, Baer (prime) or
Levitzky radical. The paper concludes with a discussion of the case whisitae Goldie
torsion right idealz’, of R:

Theorem. R is Z,-semiperfect if and only iZ/, respects every maximal right ideal &f
if and only if every nonsingular righR-module is injective.

Throughout this paper, every ring is associative with unity and all modules are uni-
tary. If M is anR-module, we writeJ (M), soqdM) andZ (M) for the Jacobson radical, the
socle, and the singular submoduledf, respectively. We writeV C®SSM and N <® M
if N is an essential submodule #f, respectively a direct summand &f. When no con-
fusion results, we abbreviate(R) = J, SOCRR) = S,, and Z(Rg) = Z,. We write the
Goldie torsion right ideal oR asZ’, whereZ(R/Z,) = Z;/ Z,, with a similar notation on
the left. The left and right annihilators of a sub3eC R are denoted by (X) andr (X),
respectively, and we writé <1 R to indicate that/ is a two-sided ideal oR. We write Z
for the ring of integers and,, for the ring of integers module. A ring, possibly with no
unity is called a general ring. We denote the ringiof n matrices oveR by M, (R).
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