

Available online at www.sciencedirect.com

Journal of Algebra 285 (2005) 795-818

www.elsevier.com/locate/jalgebra

Strong lifting

W.K. Nicholson^{a,*}, Y. Zhou^b

^a Department of Mathematics, University of Calgary, Calgary, Canada T2N 1N4 ^b Department of Mathematics, Memorial University of Newfoundland, St John's, Canada A1C 5S7

Received 27 June 2004

Available online 22 January 2005

Communicated by Kent R. Fuller

Abstract

If *I* is an ideal of a ring *R*, we say that idempotents lift strongly modulo *I* if, whenever $a^2 - a \in I$, there exists $e^2 = e \in aR$ (equivalently $e^2 = e \in Ra$) such that $e - a \in I$. The higher socles of *R* all enjoy this property, as does the Jacobson radical *J* if idempotents lift modulo *J*. Many of the useful, basic properties of lifting modulo *J* are shown to extend to any ideal *I* with strong lifting, and analogs of the semiperfect and semiregular rings are studied. A number of examples are given that limit possible extensions of the results.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Lifting idempotents; Socles; Semiregular rings; Semiperfect rings; Goldie torsion ideal

One of the most used general methods for determining the structure of a ring R is to first determine the structure of an image ring R/I where I is an ideal of R, and then "lift" this structure to R. This often comes down to "lifting idempotents" because many structural features of a ring are described in terms of idempotents. The most useful choice of the ideal in this process has been the Jacobson radical J = J(R). One reason for the popularity of J is that, if idempotents lift modulo J, then they lift in the following stronger sense: If I is an ideal of a ring R, we say that idempotents can be lifted strongly modulo I if, whenever $a^2 - a \in I$, there exists $e^2 = e \in aR$ such that $e - a \in I$. This concept turns

^{*} Corresponding author. E-mail addresses: wknichol@ucalgary.ca (W.K. Nicholson), zhou@math.mun.ca (Y. Zhou).

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.11.019

out to be left-right symmetric even if I is a one-sided ideal. The notion of strong lifting seems to be the natural requirement for ideals other than J, and the most useful properties of lifting modulo J extend. Among others, the following theorems are proved:

Theorem. Idempotents lift strongly modulo all the higher socles of a ring.

Theorem. A ring R is an exchange ring if and only if idempotents lift strongly modulo every right (respectively left) ideal of R.

If *I* is an ideal of *R*, the ring *R* will be called *I*-semiperfect (respectively *I*-semiregular) if R/I is semisimple (respectively regular) and idempotents lift strongly modulo *I*. We say that *I* respects a right ideal *T* if $T = eR \oplus S$ where $e^2 = e$ and $S \subseteq I$, and we prove:

Theorem. *R* is *I*-semiregular if and only if *I* respects every principal (respectively finitely generated) right ideal of *R*.

Theorem. *R* is *I*-semiperfect if and only if *I* respects every right ideal of *R*.

Theorem. *R* is *I*-semiperfect if and only if: (1) *R* contains no infinite set of orthogonal idempotents outside *I*; and (2) every right ideal not contained in *I* contains an idempotent not in *I*.

We also show that *I*-semiregularity and *I*-semiperfectness are inherited by related rings in a natural way; in fact, they are Morita invariants if *I* is the Jacobson, Baer (prime) or Levitzky radical. The paper concludes with a discussion of the case where *I* is the Goldie torsion right ideal Z_2^r of *R*:

Theorem. *R* is Z_2^r -semiperfect if and only if Z_2^r respects every maximal right ideal of R; if and only if every nonsingular right R-module is injective.

Throughout this paper, every ring *R* is associative with unity and all modules are unitary. If *M* is an *R*-module, we write J(M), $\operatorname{soc}(M)$ and Z(M) for the Jacobson radical, the socle, and the singular submodule of *M*, respectively. We write $N \subseteq^{\operatorname{ess}} M$ and $N \subseteq^{\oplus} M$ if *N* is an essential submodule of *M*, respectively a direct summand of *M*. When no confusion results, we abbreviate J(R) = J, $\operatorname{soc}(R_R) = S_r$, and $Z(R_R) = Z_r$. We write the Goldie torsion right ideal of *R* as Z_2^r , where $Z(R/Z_r) = Z_2^r/Z_r$, with a similar notation on the left. The left and right annihilators of a subset $X \subseteq R$ are denoted by 1(X) and r(X), respectively, and we write $I \lhd R$ to indicate that *I* is a two-sided ideal of *R*. We write \mathbb{Z} for the ring of integers and \mathbb{Z}_n for the ring of integers modulo *n*. A ring, possibly with no unity is called a general ring. We denote the ring of $n \times n$ matrices over *R* by $M_n(R)$.

796

Download English Version:

https://daneshyari.com/en/article/9493331

Download Persian Version:

https://daneshyari.com/article/9493331

Daneshyari.com