

journal of Algebra

Journal of Algebra 283 (2005) 655-670

www.elsevier.com/locate/jalgebra

On invariant theory of θ -groups

Dmitri I. Panyushev

Independent University of Moscow, Bol'shoi Vlasevskii per. 11, 121002 Moscow, Russia Received 3 December 2003 Available online 18 November 2004 Communicated by Peter Littelmann Dedicated to Oksana

Introduction

This paper is a contribution to Vinberg's theory of θ -groups, or in other words, to Invariant Theory of periodically graded semisimple Lie algebras [Vi1,Vi2]. One of our main tools is Springer's theory of regular elements of finite reflection groups [Sp], with some recent complements by Lehrer and Springer [LS1,LS2].

The ground field k is algebraically closed and of characteristic zero. Throughout, G is a connected and simply connected semisimple algebraic group, \mathfrak{g} is its Lie algebra, and Φ is the Cartan–Killing form on \mathfrak{g} ; $l = \mathrm{rk} \mathfrak{g}$.

Int \mathfrak{g} (respectively Aut \mathfrak{g}) is the group of inner (respectively all) automorphisms of \mathfrak{g} ; \mathcal{N} is the nilpotent cone in \mathfrak{g} . For $x \in \mathfrak{g}$, $\mathfrak{z}(x)$ is the centraliser of x in \mathfrak{g} .

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}_m} \mathfrak{g}_i$ be a periodic grading of \mathfrak{g} and θ the corresponding *m*th order automorphism of \mathfrak{g} . Let G_0 denote the connected subgroup of *G* with Lie algebra \mathfrak{g}_0 . Invariant Theory of θ -groups deals with orbits and invariants of G_0 acting on \mathfrak{g}_1 . Its main result status that there is a subspace $\mathfrak{c} \subset \mathfrak{g}_1$ and a finite reflection group $W(\mathfrak{c}, \theta)$ in \mathfrak{c} (the *little Weyl group*) such that $\Bbbk[\mathfrak{g}_1]^{G_0} \simeq \Bbbk[\mathfrak{c}]^{W(\mathfrak{c},\theta)}$. We say that the grading is N-regular (respectively S-regular) if \mathfrak{g}_1 contains a regular nilpotent (respectively semisimple) element of \mathfrak{g} . The grading is locally free if there is $x \in \mathfrak{g}_1$ such that $\mathfrak{z}(x) \cap \mathfrak{g}_0 = \{0\}$. The same terminology also applies to θ .

In this paper, we obtain some structural results for gradings with these properties and study interrelations of these properties. Section 1 contains some preliminary material on

E-mail address: panyush@mccme.ru.

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.03.032

 θ -groups and regular elements. In Section 2, we begin with a dimension formula for semisimple G_0 -orbits in \mathfrak{g}_1 . We also prove two "uniqueness" theorems. Recall that Int \mathfrak{g} is the identity component of Aut \mathfrak{g} , and it operates on Aut \mathfrak{g} via conjugations. Given $m \in \mathbb{N}$, we prove that each connected component of Aut \mathfrak{g} contains at most one Int \mathfrak{g} -orbit consisting of automorphisms of order m that are either N-regular or S-regular and locally free. In Section 3, we show that θ -groups corresponding to N-regular gradings enjoy a number of good properties. Let m_1, \ldots, m_l be the exponents of \mathfrak{g} and let $\{e, h, f\}$ be a regular \mathfrak{sl}_2 triple such that $e \in \mathfrak{g}_1$ and $f \in \mathfrak{g}_{-1}$. For the purposes of this introduction, assume that θ is inner. Set $k_i = \#\{j \mid m_j \equiv i \pmod{m}\}$ $(i \in \mathbb{Z}_m)$, and let ζ be a primitive *m*th root of unity. We prove that

- (i) the eigenvalues of θ on $\mathfrak{z}(e)$ are ζ^{m_i} $(1 \leq i \leq l)$,
- (ii) dim \mathfrak{g}_{i+1} dim $\mathfrak{g}_i = k_{-i-1} k_i$ for all $i \in \mathbb{Z}_m$,
- (iii) the restriction homomorphism $\mathbb{k}[\mathfrak{g}]^G \to \mathbb{k}[\mathfrak{g}_1]^{G_0}$ is onto,
- (iv) the G_0 -action on \mathfrak{g}_1 admits a Kostant–Weierstrass (= KW) section.

In the general case, the definition of the k_i 's becomes more involved, see Eq. (3.1), but the above assertions (ii)–(iv) remains intact.

In Section 4, it is shown that any locally free S-regular grading of \mathfrak{g} is N-regular. This implies that all such gradings admit a KW-section. We also give a formula for dimension of all subspaces \mathfrak{g}_i in the S-regular case. Another result is that dim $\mathfrak{c} \leq k_{-1}$ for any θ -group. We then show that the *G*-stable cone $\pi^{-1}\pi(\mathfrak{c}) \subset \mathfrak{g}$ is a normal complete intersection. (Here $\pi : \mathfrak{g} \to \mathfrak{g}/\!/G$ is the quotient mapping.) In particular, if θ is S-regular or N-regular, then $\overline{G \cdot \mathfrak{g}_1}$ is a normal complete intersection. A description of the defining ideal of $\overline{G \cdot \mathfrak{g}_1}$ is also given. This material on normality relies on results of Richardson [Ri]. It is curious to note that in case m = 2 (i.e., θ is involutory) S-regularity is equivalent to N-regularity. But for m > 2 neither of these properties implies the other.

Section 5 contains a description of the coexponents for little Weyl groups, if θ is both S- and N-regular. This is based on recent results of Lehrer and Springer [LS2].

1. Vinberg's θ -groups and Springer's regular elements

Let θ be an automorphism of \mathfrak{g} of finite order m. The automorphism of G induced by θ is also denoted by θ . Let ζ be a fixed primitive mth root of unity. Then θ determines a periodic grading $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}_m} \mathfrak{g}_i$, where $\mathfrak{g}_i = \{x \in \mathfrak{g} \mid \theta(x) = \zeta^i x\}$. Whenever we want to indicate the dependence of the grading on θ , we shall endow ' \mathfrak{g}_i ' with a suitable superscript. If M is a θ -stable subspace, then $M_i := M \cap \mathfrak{g}_i$. Recall some standard facts on periodic gradings (see [Vi1, Section 1]):

- $\Phi(\mathfrak{g}_i,\mathfrak{g}_j)=0$ unless i+j=0;
- Φ is non-degenerate on $\mathfrak{g}_i \oplus \mathfrak{g}_{-i}$ $(i \neq 0)$ and on \mathfrak{g}_0 ;
- in particular, \mathfrak{g}_0 is a reductive algebraic Lie algebra and dim $\mathfrak{g}_i = \dim \mathfrak{g}_{-i}$;
- if $x \in \mathfrak{g}_i$ and $x = x_s + x_n$ is its Jordan decomposition, then $x_s, x_n \in \mathfrak{g}_i$.

Download English Version:

https://daneshyari.com/en/article/9493377

Download Persian Version:

https://daneshyari.com/article/9493377

Daneshyari.com