

Available online at www.sciencedirect.com

Journal of Functional Analysis 221 (2005) 251-302

JOURNAL OF Functional Analysis

www.elsevier.com/locate/jfa

Bubble towers for supercritical semilinear elliptic equations

Yuxin Ge^a, Ruihua Jing^{a, b}, Frank Pacard^{a,*}

^aDépartement de Mathématiques, Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université Paris XII-Val de Marne, 61 avenue du Général de Gaulle, 94010 Créteil, Cedex,

France

^bDepartment of Mathematics, East China Normal University, 200062 Shanghai, People's Republic of China

Received 19 February 2004; received in revised form 12 September 2004; accepted 29 September 2004 Communicated by H. Brezis Available online 30 November 2004

Abstract

We construct positive solutions of the semilinear elliptic problem $\Delta u + \lambda u + u^p = 0$ with Dirichet boundary conditions, in a bounded smooth domain $\Omega \subset \mathbb{R}^N$ $(N \ge 4)$, when the exponent p is supercritical and close enough to $\frac{N+2}{N-2}$ and the parameter $\lambda \in \mathbb{R}$ is small enough. As $p \to \frac{N+2}{N-2}$, the solutions have multiple blow up at finitely many points which are the critical points of a function whose definition involves Green's function. Our result extends the result of Del Pino et al. (J. Differential Equations 193(2) (2003) 280) when Ω is a ball and the solutions are radially symmetric.

© 2004 Elsevier Inc. All rights reserved.

MSC: 35J60; 35J25

Keywords: Supercritical Sobolev exponent; Green function; Multiple blow up

0022-1236/ $\ensuremath{\$}$ - see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2004.09.011

^{*} Corresponding author.

E-mail addresses: ge@univ-paris12.fr (Y. Ge), jing@univ-paris12.fr (R. Jing), pacard@univ-paris12.fr (F. Pacard).

1. Introduction

In this paper, we consider the semilinear elliptic problem

$$\begin{cases} \Delta u + \lambda u + u^p = 0 \text{ in } \Omega, \\ u > 0 \text{ in } \Omega, \\ u = 0 \text{ on } \partial \Omega, \end{cases}$$
(1)

where Ω is a bounded regular domain in \mathbb{R}^N , $N \ge 4$, the parameter $\lambda \in \mathbb{R}$ and the exponent *p* is larger than

$$p_N := \frac{N+2}{N-2},$$

the critical Sobolev exponent.

When $p = p_N$, Brezis and Nirenberg [3] have proved that (1) admits a solution provided $0 < \lambda$ is less than the first eigenvalue of the Laplacian on Ω with 0 Dirichlet boundary condition. Direct application of Pohozaev's identity [12] shows that solutions of (1) do not exist when $\lambda \leq 0$, $p \geq p_N$ and Ω is a star-shaped domain.

In this paper, we are interested in the existence of solutions of (1) in the case where p is larger than the critical Sobolev exponent. When Ω is the unit ball it is easy to check that there exist radially symmetric positive solutions of

$$\Delta u + u^p = 0,$$

which have multiple blow up at the origin as the exponent p tends to p_N (we do not assume Dirichlet boundary condition here). We discuss this result in Section 4. In a recent paper [5], Del Pino et al. have proved that a similar result was also true for (1). These solutions which have multiple blow up at some points in Ω will be referred to as "bubble tree solutions". We are interested in the existence of these bubble tree solutions when Ω is arbitrary.

2. Statement of the result

Let G denote Green's function for the Laplace operator with Dirichlet boundary condition on Ω and let H denote Robin's function, i.e. the regular part of Green's function. Namely,

$$G(y, z) := |y - z|^{2-N} - H(y, z)$$

for $(y, z) \in \Omega \times \Omega$. Observe that $\Delta_y H = 0$ in $\Omega \times \Omega$ and G = 0 on $\partial(\Omega \times \Omega)$.

Download English Version:

https://daneshyari.com/en/article/9495386

Download Persian Version:

https://daneshyari.com/article/9495386

Daneshyari.com