

Available online at www.sciencedirect.com

Journal of Functional Analysis 224 (2005) 72-106

JOURNAL OF Functional Analysis

www.elsevier.com/locate/jfa

Dixmier traces as singular symmetric functionals and applications to measurable operators

Steven Lord^{a,1}, Aleksandr Sedaev^{b,2}, Fyodor Sukochev^{a,*}

^aSchool of Informatics and Engineering, Flinders University of South Australia, Bedford Park 5042, Australia

^bDepartment of Mathematics, Voronezh State University of Architecture and Construction, 20-letiya Oktyabrya 84, Voronezh 394006, Russia

Received 24 May 2004; received in revised form 14 December 2004; accepted 6 January 2005 Communicated by Alain Connes Available online 23 February 2005

Abstract

We unify various constructions and contribute to the theory of singular symmetric functionals on Marcinkiewicz function/operator spaces. This affords a new approach to the non-normal Dixmier and Connes–Dixmier traces (introduced by Dixmier and adapted to non-commutative geometry by Connes) living on a general Marcinkiewicz space associated with an arbitrary semifinite von Neumann algebra. The corollaries to our approach, stated in terms of the operator ideal $\mathscr{L}^{(1,\infty)}$ (which is a special example of an operator Marcinkiewicz space), are: (i) a new characterization of the set of all positive measurable operators from $\mathscr{L}^{(1,\infty)}$, i.e. those on which an arbitrary Connes–Dixmier trace yields the same value. In the special case, when the operator ideal $\mathscr{L}^{(1,\infty)}$ is considered on a type *I* infinite factor, a bounded operator *x* belongs to $\mathscr{L}^{(1,\infty)}$ if and only if the sequence of singular numbers $\{s_n(x)\}_{n\geq 1}$ (in the descending order and counting the multiplicities) satisfies $\|x\|_{(1,\infty)} := \sup_{N\geq 1} \frac{1}{\log(1+N)} \sum_{n=1}^{N} s_n(x) < \infty$. In this case, our characterization amounts to saying that a positive element $x \in \mathscr{L}^{(1,\infty)}$ is measurable if and only if $\lim_{N\to\infty} \frac{1}{\log N} \sum_{n=1}^{N} s_n(x)$ exists; (ii) the set of Dixmier traces and the

E-mail addresses: sed@vmail.ru (A. Sedaev), sukochev@infoeng.flinders.edu.au (F.A. Sukochev).

0022-1236/ $\ensuremath{\$}$ - see front matter @ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2005.01.002

^{*}Corresponding author. Fax: +61 882012904.

¹Supported by the Australian Research Council.

 $^{^2 \}text{Supported}$ by RFFI Grant 02-01-00146 and by the Scientific program "Universities of Russia" Grant UR 04.01.051.

set of Connes–Dixmier traces are norming sets (up to equivalence) for the space $\mathscr{L}^{(1,\infty)}/\mathscr{L}_0^{(1\infty)}$, where the space $\mathscr{L}_0^{(1,\infty)}$ is the closure of all finite rank operators in $\mathscr{L}^{(1,\infty)}$ in the norm $\|.\|_{(1,\infty)}$.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Non-normal (Dixmier) traces; Singular symmetric functionals; Banach limits; Marcinkiewicz spaces; Non-commutative geometry

0. Introduction

In [3] Dixmier proved the existence of non-normal traces on the von Neumann algebra B(H). Dixmier's original construction involves singular dilation invariant positive linear functionals ω on $\ell^{\infty}(\mathbb{N})$. This construction was altered by Connes [2] (see also Definition 5.2 below) who defined non-normal traces via the composition of the Cesaro mean and a state on $C_b([0,\infty))/C_0([0,\infty))$. In [4–6] the traces of Dixmier [3] were broadly generalized as singular symmetric functionals on Marcinkiewicz function (respectively, operator) spaces $M(\psi)$ on $[0,\infty)$ (respectively, on a semifinite von Neumann algebra). The symmetric functionals in [5,6] involve Banach limits, that is, singular translation invariant positive linear functionals L' on $\ell^{\infty}(\mathbb{N})$. We extend the construction of Dixmier in Definition 1.7 and Connes in Definition 5.2 (verified in Theorem 6.3) by extending the notion of Banach limits to $C_b([0,\infty))$.

The identification of the commutative specialization of (Connes-)Dixmier traces as singular symmetric functionals has some pivotal consequences. The established theory of Banach limits [10] and singular symmetric functionals on Marcinkiewicz spaces [4–6] can be applied to questions concerning the (Connes-) Dixmier trace, a central notion in Connes' non-commutative geometry [2]. Conversely, ideas in Connes' non-commutative geometry for operators [2, IV.2. β , Definition 7], lend themselves to generalization to abstract Marcinkiewicz spaces (Definitions 3.2 and 3.5). As a result, we have been able to present a new characterization of measurable operators (see Theorem 5.12, Remark 5.13 and Theorem 6.6).

The paper is structured as follows:

Section 1 introduces Banach limits, almost convergence (extending the notions of Lorentz [10]) and the theory of singular symmetric functionals on the Marcinkiewicz space $M(\psi)$ defined by a concave function ψ [4,5]. The construction of singular symmetric functionals on $M(\psi)$ [5] (Definition 1.6 below) is extended by Definition 1.7.

Section 2 introduces sufficient conditions to identify the singular symmetric functionals of [5] with those of Definition 1.7, see Theorems 2.3 and 2.7. A result in [5], on the Riesz semi-norm of a function x in a Marcinkiewicz space $M(\psi)$ as the supremum of the values $\{f(x)\}$ where $\{f\}$ is a set of singular symmetric functionals on $M(\psi)$, is extended in Theorem 2.8.

Section 3 contains an analysis of various notions of a measurable element of a Marcinkiewicz space $M(\psi)$, introduced in Definitions 3.2 and 3.5, and their coincidence (Theorem 3.7 and Corollary 3.9, see also Theorem 3.14).

The results of Sections 2 and 3 concern singular symmetric functionals on $M(\psi)$ parameterized by the set of strictly increasing, invertible, differentiable and unbounded

Download English Version:

https://daneshyari.com/en/article/9495459

Download Persian Version:

https://daneshyari.com/article/9495459

Daneshyari.com