

Available online at www.sciencedirect.com

Journal of Functional Analysis 221 (2005) 37-82

JOURNAL OF Functional Analysis

www.elsevier.com/locate/jfa

About a construction and some analysis of time inhomogeneous diffusions on monotonely moving domains

Francesco Russo, Gerald Trutnau*,1

Département de Mathématiques, Université Paris 13, Institut Galilée, 99, av. Jean-Baptiste Clément, 93430 Villetaneuse, France

> Received 20 December 2003; accepted 19 August 2004 Communicated by Paul Malliavin Available online 23 November 2004

Abstract

We construct and analyze in a very general way time inhomogeneous (possibly also degenerate or reflected) diffusions in monotonely moving domains $E \subset \mathbb{R} \times \mathbb{R}^d$, i.e. if $E_t := \{x \in \mathbb{R}^d | (t, x) \in E\}$, $t \in \mathbb{R}$, then either $E_s \subset E_t$, $\forall s \leq t$, or $E_s \supset E_t$, $\forall s \leq t$, $s, t \in \mathbb{R}$. Our major tool is a further developed $L^2(E, m)$ -analysis with well chosen reference measure m. Among few examples of completely different kinds, such as e.g. singular diffusions with reflection on moving Lipschitz domains in \mathbb{R}^d , non-conservative and exponential time scale diffusions, degenerate time inhomogeneous diffusions, we present an application to what we name skew Bessel process on γ . Here γ is either a monotonic function or a continuous Sobolev function. These diffusions form a natural generalization of the classical Bessel processes and skew Brownian motions, where the local time refers to the constant function $\gamma \equiv 0$. © 2004 Elsevier Inc. All rights reserved.

MSC: 60J60; 31C25; 47D06; 47D07; 35K65; 35K20; 60J55

Keywords: Diffusion processes; Dirichlet spaces; One-parameter semigroups and linear evolution equations; Markov semigroups and applications to diffusion processes; Parabolic partial differential equations of degenerate type; Boundary value problems for second-order; Parabolic equations; Local time and additive functionals

^{*} Corresponding author.

E-mail addresses: russo@math.univ-paris13.fr (F. Russo), trutnau@math.univ-paris13.fr (G. Trutnau). ¹ Financially supported by TMR Grant HPMF-CT-2000-00942 of the European Union.

0. Introduction

The theory of time dependent Dirichlet forms has been inspired from [11,12], and recently by [13]. We present here an independent, self-contained and more enclosing finite dimensional analysis, being integrated in the general theory of generalized Dirichlet forms. The present exposition can also be seen as a completion to [17], and vice versa.

We are concerned with the development of a new technique for the general treatment of time dependent diffusions on monotonely moving domains $E \subset \mathbb{R} \times \mathbb{R}^d$ with generator

$$LF(s, x) = \sum_{i,j=1}^{d} a_{ij}(s, x)\partial_i\partial_j F(s, x) + \sum_{i=1}^{d} b_i(s, x)\partial_i F(s, x) - c(s, x)F(s, x) + d(s)\partial_t F(s, x),$$

where the (symmetric) diffusion matrix $A = (a_{ij})_{1 \le i, j \le d}$ may be degenerate, b_i discontinuous, non locally bounded, c is positive and bounded, and L may be regarded together with some boundary conditions. At the present stage we give as examples $d \equiv 1$, and d(s) = sd, where d is a positive constant.

Actually L may be examined with absorbing boundary conditions on some "freely" chosen $J \subset \partial E$, and with reflecting boundary conditions on the complement $\partial E \setminus J$. In order to not overload the exposition of this paper we concentrate exclusively on reflecting boundary conditions in case of existent boundary (cf. Remark 1.10).

For $s \in \mathbb{R}$ let $E_s := \{x \in \mathbb{R}^d | (s, x) \in E\}$. A monotonely moving domain $E \subset \mathbb{R} \times \mathbb{R}^d$ is by our definition a closed domain which satisfies either $E_s \subset E_t$, or $E_t \subset E_s$, for all $s \leq t$ in some time interval of \mathbb{R} . If $E_s \equiv E_t$, we are concerned with "constantly moving domains". These are cylindrical domains such as e.g. $\mathbb{R} \times \mathbb{R}^d$, or more generally such as e.g. $\mathbb{R} \times D$, $D \subset \mathbb{R}^d$. For simplicity we assume that the time interval T_I is given by \mathbb{R} , or by $\mathbb{R}^+ := [0, \infty)$. We can write $E = \bigcup_{s \in T_I} \{s\} \times E_s$.

If

$$b_i = \frac{1}{2} \sum_{j=1}^d \left(\partial_j a_{ij} + a_{ij} \frac{\partial_j \rho}{\rho} \right)$$

with sufficiently regular ρ , $A = (a_{ij})_{1 \le i,j \le d}$, and ∂E , an integration by parts w.r.t. the "well-chosen" measure $dm = \rho(s, x) dx ds$ gives

$$-\int_{E} LF \cdot G \, dm = \frac{1}{2} \int_{E} \langle A\nabla F, \nabla G \rangle \, dm + \int_{E} cFG \, dm - \int_{E} \Lambda F \cdot G \, dm, \qquad (1)$$

Download English Version:

https://daneshyari.com/en/article/9495810

Download Persian Version:

https://daneshyari.com/article/9495810

Daneshyari.com