

Available online at www.sciencedirect.com

Journal of Functional Analysis 221 (2005) 122-149

JOURNAL OF Functional Analysis

www.elsevier.com/locate/jfa

Rational hyperholomorphic functions in \mathbb{R}^4

Daniel Alpay^{a,*,1}, Michael Shapiro^{b,2}, Dan Volok^c

^aDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
^bDepartamento de Matemáticas, E.S.F.M. del I.P.N., 07300 México, D.F., México
^cDepartment of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Received 9 January 2004; accepted 2 July 2004 Communicated by Sarason Available online 13 October 2004

Abstract

We introduce the notion of rationality for hyperholomorphic functions (functions in the kernel of the Cauchy–Fueter operator). Following the case of one complex variable, we give three equivalent definitions: the first in terms of Cauchy–Kovalevskaya quotients of polynomials, the second in terms of realizations and the third in terms of backward-shift invariance. Also introduced and studied are the counterparts of the Arveson space and Blaschke factors. © 2004 Elsevier Inc. All rights reserved.

MSC: Primary 47S10; Secondary 30G35

Keywords: Hyperholomorphic functions; Rational functions; Realization theory

1. Introduction

It is well known that functions holomorphic in a domain $\Omega \subset \mathbb{C}$ are exactly the elements of the kernel of the Cauchy–Riemann differential operator

$$\overline{\partial} = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$$

0022-1236/ $\ensuremath{\$}$ - see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2004.07.012

^{*} Corresponding author. Fax: +972-8-647-7648.

E-mail addresses: dany@math.bgu.ac.il (D. Alpay), shapiro@esfm.ipn.mx (M. Shapiro), volok@math.bgu.ac.il (D. Volok).

¹ Supported by the Israel Science Foundation (Grant no. 322/00).

² Partially supported by CONACYT projects as well as by Instituto Politécnico Nacional in the framework of COFAA and CGPI programs.

restricted to Ω . A polynomial in x and y is holomorphic if, and only if, it is a polynomial in the complex variable z = x + iy, and rational holomorphic functions are quotients of polynomials.

Holomorphic functions of one complex variable have a natural generalization to the quaternionic setting when one replaces the Cauchy–Riemann operator by the Cauchy–Fueter operator

$$D = \frac{\partial}{\partial x_0} + \mathbf{e_1} \frac{\partial}{\partial x_1} + \mathbf{e_2} \frac{\partial}{\partial x_2} + \mathbf{e_3} \frac{\partial}{\partial x_3}.$$

In this expression the x_j are real variables and the e_j are imaginary units of the skew-field \mathbb{H} of quaternions (see Section 2 below for more details). Solutions of the equation Df = 0 are called left-hyperholomorphic functions (they are also called left-hyperanalytic, or left-monogenic, or regular, functions, see [18,13,23]). Right-hyperholomorphic functions are the solutions of the equation

$$fD = \frac{\partial f}{\partial x_0} + \frac{\partial f}{\partial x_1} \mathbf{e_1} + \frac{\partial f}{\partial x_2} \mathbf{e_2} + \frac{\partial f}{\partial x_3} \mathbf{e_3} = 0.$$

When trying to generalize the notions of polynomial and rational functions to the hyperholomorphic setting, one encounters several obstructions. For instance, the quaternionic variable

$$x = x_0 + x_1 \mathbf{e_1} + x_2 \mathbf{e_2} + x_3 \mathbf{e_3}$$

is not hyperholomorphic. Moreover, the point-wise product of two hyperholomorphic functions is not hyperholomorphic in general and the point-wise inverse of a non-vanishing hyperholomorphic function need not be hyperholomorphic.

For the polynomials these difficulties were overcome by Fueter, who introduced in [16] the symmetrized multi-powers of the three elementary functions

$$\zeta_1(x) = x_1 - \mathbf{e_1} x_0, \quad \zeta_2(x) = x_2 - \mathbf{e_2} x_0, \text{ and } \zeta_3(x) = x_3 - \mathbf{e_3} x_0.$$

The polynomials thus obtained are known today as the Fueter polynomials. They are (both right and left) hyperholomorphic and appear in power series expansions of hyperholomorphic functions. In particular, a hyperholomorphic polynomial is a linear combination of the Fueter polynomials.

In this paper we introduce the notion of rational hyperholomorphic function. We obtain three equivalent characterizations: the first one in terms of quotients and products of polynomials, the second one in terms of realization and the last one in terms of backward-shift-invariance. These various notions need to be suitably defined in the hyperholomorphic setting. A key tool here is the Cauchy–Kovalevskaya product of hyperholomorphic functions.

Download English Version:

https://daneshyari.com/en/article/9495812

Download Persian Version:

https://daneshyari.com/article/9495812

Daneshyari.com