
Journal of Functional Analysis 221 (2005) 122–149

www.elsevier.com/locate/jfa

Rational hyperholomorphic functions inR4
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Abstract

We introduce the notion of rationality for hyperholomorphic functions (functions in the kernel
of the Cauchy–Fueter operator). Following the case of one complex variable, we give three
equivalent definitions: the first in terms of Cauchy–Kovalevskaya quotients of polynomials,
the second in terms of realizations and the third in terms of backward-shift invariance. Also
introduced and studied are the counterparts of the Arveson space and Blaschke factors.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that functions holomorphic in a domain�⊂C are exactly the
elements of the kernel of the Cauchy–Riemann differential operator
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restricted to�. A polynomial inx andy is holomorphic if, and only if, it is a polynomial
in the complex variablez = x + iy, and rational holomorphic functions are quotients
of polynomials.
Holomorphic functions of one complex variable have a natural generalization to the

quaternionic setting when one replaces the Cauchy–Riemann operator by the Cauchy–
Fueter operator

D = �
�x0
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�

�x1
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�
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�

�x3
.

In this expression thexj are real variables and theej are imaginary units of the
skew-fieldH of quaternions (see Section 2 below for more details). Solutions of the
equationDf = 0 are called left-hyperholomorphic functions (they are also called left-
hyperanalytic, or left-monogenic, or regular, functions, see[18,13,23]). Right-
hyperholomorphic functions are the solutions of the equation

fD = �f
�x0

+ �f
�x1

e1 + �f
�x2

e2 + �f
�x3

e3 = 0.

When trying to generalize the notions of polynomial and rational functions to the
hyperholomorphic setting, one encounters several obstructions. For instance, the quater-
nionic variable

x = x0 + x1e1 + x2e2 + x3e3

is not hyperholomorphic. Moreover, the point-wise product of two hyperholomorphic
functions is not hyperholomorphic in general and the point-wise inverse of a non-
vanishing hyperholomorphic function need not be hyperholomorphic.
For the polynomials these difficulties were overcome by Fueter, who introduced in

[16] the symmetrized multi-powers of the three elementary functions

�1(x) = x1 − e1x0, �2(x) = x2 − e2x0, and �3(x) = x3 − e3x0.

The polynomials thus obtained are known today as the Fueter polynomials. They are
(both right and left) hyperholomorphic and appear in power series expansions of hy-
perholomorphic functions. In particular, a hyperholomorphic polynomial is a linear
combination of the Fueter polynomials.
In this paper we introduce the notion of rational hyperholomorphic function. We

obtain three equivalent characterizations: the first one in terms of quotients and products
of polynomials, the second one in terms of realization and the last one in terms of
backward-shift-invariance. These various notions need to be suitably defined in the
hyperholomorphic setting. A key tool here is the Cauchy–Kovalevskaya product of
hyperholomorphic functions.
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