# Divisors of modular forms on $\Gamma_{0}(4)$ 

James R. Atkinson<br>Department of Mathematics, University of Illinois, Urbana, IL 61801, USA<br>Received 10 November 2003; revised 13 May 2004<br>Communicated by R.C. Vaughan


#### Abstract

There is a relationship between the values of a sequence of modular functions at points in the divisor of a meromorphic modular form and the exponents of its infinite product expansion. We make this relationship explicit for the case of modular forms on the congruence subgroup $\Gamma_{0}(4)$. We also consider some applications to classical number theoretic functions such as the number of representations of an integer as a sum of squares.


 © 2004 Elsevier Inc. All rights reserved.Keywords: Modular form; Modular function; Divisor; Theta operator; Genus zero congruence subgroups

## 1. Introduction and statement of results

For $f(z)$ meromorphic on the upper half-plane $\mathbb{H}$, define the theta operator by

$$
\begin{equation*}
\theta f(z):=\frac{1}{2 \pi i} \frac{d}{d z} f(z) \tag{1.1}
\end{equation*}
$$

Define $\sigma(n):=\sum_{d \mid n} d$, and denote by $E_{2}(z)$ the weight two Eisenstein series

$$
\begin{equation*}
E_{2}(z):=1-24 \sum_{n=1}^{\infty} \sigma(n) q^{n} \quad\left(q:=e^{2 \pi i z}\right) . \tag{1.2}
\end{equation*}
$$

E-mail address: jratkins@math.uiuc.edu.

If $f$ is a meromorphic modular form of weight $k \in \mathbb{Z}$ on $\mathrm{SL}_{2}(\mathbb{Z})$, then it is known that

$$
\frac{\theta f}{f}=\frac{k}{12} E_{2}-f_{\theta}
$$

where $f_{\theta}$ is a meromorphic modular form of weight two. Bruinier et al. [2] determined $f_{\theta}$ explicitly in terms of the values of a sequence of modular functions. This gives interesting results regarding the exponents of product expansions of modular forms, and recurrence relations for their Fourier coefficients. Choie and Kohnen [3] examined some corresponding problems for functions modular on Hecke groups, and Ahlgren [1] considered the genus zero congruence subgroups $\Gamma_{0}(p)$ for $p \in\{2,3,5,7,13\}$.

After this series of papers (the general outline for studying such questions was provided by Brunier et al. [2]) it is natural to consider the analogous problem for $\Gamma_{0}(4)$. This case is of interest because it is the first where half-integral weight forms arise. This approach will clearly extend to other genus zero subgroups. We consider some applications to natural number theoretic functions; for example, representations of integers as sums of squares.

The space of all meromorphic (resp. holomorphic) modular forms of weight $k \in \frac{1}{2} \mathbb{Z}$ on $\Gamma_{0}(4)$ (see Section 2 for definition) will be denoted $\mathcal{M}_{k}$ (resp. $M_{k}$ ). Define $\Theta(z) \in$ $M_{1 / 2}$ by

$$
\begin{equation*}
\Theta(z):=\sum_{n=-\infty}^{\infty} q^{n^{2}} \tag{1.3}
\end{equation*}
$$

and $F_{1}(z) \in M_{2}$ by

$$
F_{1}(z):=\sum_{\text {odd } n>0} \sigma(n) q^{n}
$$

Then, let

$$
\begin{equation*}
\phi(z):=\frac{\Theta^{4}(z)}{F_{1}(z)}=q^{-1}+8+20 q-62 q^{3}+\cdots \tag{1.4}
\end{equation*}
$$

The function $\phi(z) \in \mathcal{M}_{0}$ is univalent with a simple pole at infinity and a simple zero at $1 / 2$. For each positive integer $m$, define $j_{m}$ as the unique modular function on $\Gamma_{0}(4)$, holomorphic on $\mathbb{H}$, vanishing at $1 / 2$, and whose Fourier expansion at infinity has the form

$$
\begin{equation*}
q^{-m}+c_{m}(0)+c_{m}(1) q+\text { higher-order terms } \tag{1.5}
\end{equation*}
$$

# https://daneshyari.com/en/article/9496450 

Download Persian Version:
https://daneshyari.com/article/9496450

## Daneshyari.com

