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Abstract

We obtain explicit formulae for the values of the 2v − j minors, j = 0, 1, 2 of some
infinite families of matrices of order 2v constructed from supplementary difference sets of
the form 2 − {v; k1, k2; λ}. This allows us to obtain information on the growth problem for
families of matrices with moderate growth. Several examples specifying the pivot pattern of
these matrices are presented and a conjecture about their pivot structure is posed.
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1. Introduction

Let A = [aij ] ∈ Rn×n. We reduce A to upper triangular form by using Gaussian

elimination with complete pivoting (GECP) [14]. Let A(k) = [a(k)
ij ] denote the matrix

obtained after the first k pivoting operations, so A(n−1) is the final upper triangular
matrix. The diagonal entries of that final matrix are called pivots and are denoted
by pi , i = 1, 2, . . . , n. Matrices with the property that no exchanges are actually
needed during GECP are called completely pivoted (CP). The following problem
arises during the elimination process.

The growth problem

Let g(n, A) = max
i,j,k

|a(k)
ij |/|a(0)

11 | denote the growth factor associated with GECP

on A and g(n) = sup{ g(n, A)/A ∈ Rn×n }. The problem of determining g(n) for
various values of n is called the growth problem.

The importance of the growth factor

For the solution of the linear system A · x = b the most popular numerical method
used for its solution is Gaussian elimination with pivoting. The following theorem
holds for the computed solution.

Theorem 1 [14]. Let A · x = b be an m by n system, and let �A be an m by n

matrix. The computed solution x̄ using Gaussian elimination with pivoting is the
exact solution of the system (A + �A) · x̄ = b, where

‖�A‖∞ � (n3 + 2n2 + 2n) · g(n) · u1‖A‖∞,

u1 denotes the unit roundoff error. Thus the stability of the computed solution heavily
relies on the value of the growth factor g(n). The question naturally arises is: How
large can the growth factor g(n) be for an arbitrary matrix A of order n? When Gaus-
sian elimination with partial pivoting is used it can be proved [14] that g(n) � 2n

whereas when Gaussian elimination with complete pivoting is used it can be proved

[14] that g(n) �
[
n · 2 · 3

1
2 · · · n 1

n−1
] 1

2 . Both these bounds do not provide stability
when they are replaced in the error formula of Theorem 1 and are not realistic
since in practice matrices with large growth factor rarely appear. In [1] Cryer did
numerical experiments in which he computed g(n, A), doing complete pivoting on
n × n matrices A with entries chosen randomly from the interval [1, −1] and for
sizes up to n = 8. He had to generate over 50,000 3 × 3 examples before finding one
with g(3, A) > 2. Also the largest g(n, A) he obtained by testing 10,000 random
matrices for sizes up to n = 8 was 2.8348. We also performed experiments with ran-
dom matrices from [1, −1] and the largest g(n, A) we encountered for GECP for size
n = 1000 was 7.010859. The theoretical bound for this value of n is 8652740.061.
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