

Available online at www.sciencedirect.com

SCIENCE d DIRECT®

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 400 (2005) 291–311

www.elsevier.com/locate/laa

Linear maps transforming the higher numerical ranges

Chi-Kwong Li^a, Yiu-Tung Poon^{b,*}, Nung-Sing Sze^c

^aDepartment of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA ^bDepartment of Mathematics, Iowa State University, Ames, IA 50011, USA ^cDepartment of Mathematics, The University of Hong Kong, Hong Kong

> Received 16 September 2004; accepted 24 November 2004 Available online 5 January 2005 Submitted by R.A. Brualdi

Abstract

Let $k \in \{1, ..., n\}$. The k-numerical range of $A \in M_n$ is the set $W_k(A) = \{(\operatorname{tr} X^*AX)/k : X \text{ is } n \times k, X^*X = I_k\},$

and the k-numerical radius of A is the quantity

 $w_k(A) = \max\{|z| : z \in W_k(A)\}.$

Suppose k > 1, $k' \in \{1, ..., n'\}$ and $n' < C(n, k) \min\{k', n' - k'\}$. It is shown that there is a linear map $\phi : M_n \to M_{n'}$ satisfying $W_{k'}(\phi(A)) = W_k(A)$ for all $A \in M_n$ if and only if n'/n = k'/k or n'/n = k'/(n - k) is a positive integer. Moreover, if such a linear map ϕ exists, then there are unitary matrix $U \in M_{n'}$ and nonnegative integers p, q with p + q = n'/n such that ϕ has the form

$$A \mapsto U^*[\underbrace{A \oplus \cdots \oplus A}_{p} \oplus \underbrace{A^{\mathsf{t}} \oplus \cdots \oplus A^{\mathsf{t}}}_{q}]U$$
$$A \mapsto U^*[\psi(A) \oplus \cdots \oplus \psi(A) \oplus \psi(A)^{\mathsf{t}} \oplus \cdots \oplus \psi(A)^{\mathsf{t}}]U,$$

or

* Corresponding author.

E-mail addresses: ckli@math.wm.edu (C.-K. Li), ytpoon@iastate.edu (Y.-T. Poon), nungsingsze@graduate.hku.hk (N.-S. Sze).

^{0024-3795/\$ -} see front matter $_{\odot}$ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.11.026

292 C.-K. Li et al. / Linear Algebra and its Applications 400 (2005) 291–311

where $\psi: M_n \to M_n$ has the form $A \mapsto [(\operatorname{tr} A)I_n - (n-k)A]/k$. Linear maps $\tilde{\phi}: M_n \to M_{n'}$ satisfying $w_{k'}(\tilde{\phi}(A)) = w_k(A)$ for all $A \in M_n$ are also studied. Furthermore, results are extended to triangular matrices. © 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A04; 15A60; 47A12

Keywords: Linear transformations; Numerical range; Numerical radius

1. Introduction

There has been a great deal of interest in studying linear operator $\phi : \mathcal{M} \to \mathcal{M}$, where \mathcal{M} is a matrix algebra or space, with a certain special property such as:

(a) f(φ(A)) = f(A) for all A ∈ M, where f is a given function on M;
(b) φ(S) ⊆ S or φ(S) = S for a certain subset S ⊆ M;
(c) φ(A) ~ φ(B) in M whenever A ~ B in M for a certain relation ~ on M.

Very often, ϕ has nice forms such as

 $A \mapsto MAN$ or $A \mapsto MA^{t}N$

for some suitable $M, N \in \mathcal{M}$. One may see [19] for a survey on the subject. Recently, there has been research on more general problems concerning linear transformations $\phi: \mathcal{M} \to \mathcal{M}'$ with some special properties such as

- (a) f'(φ(A)) = f(A) for all A ∈ M, where f and f' are appropriate functions on M and M';
- (b) $\phi(\mathscr{S}) \subseteq \mathscr{S}'$ or $\phi(\mathscr{S}) = \mathscr{S}'$ for certain subsets $\mathscr{S} \subseteq \mathscr{M}$ and $\mathscr{S}' \subseteq \mathscr{M}'$;
- (c) $\phi(A) \sim' \phi(B)$ in \mathscr{M}' whenever $A \sim B$ in \mathscr{M} for certain relations \sim on \mathscr{M} and \sim' on \mathscr{M}' .

Such problems are more challenging and their study often lead to the discovery of unexpected results and hidden structures of the matrix algebras \mathcal{M} and \mathcal{M}' ; see [6, 10]. In this paper, we consider these types of problems. We solve a specific problem and develop some proof techniques that may be useful for future study in this area.

Let us first introduce some notations and definitions. Denote by M_n the algebra of $n \times n$ complex matrices. For $1 \leq k \leq n$, define (see Halmos [11]) the *k*-numerical range of $A \in M_n$ as

$$W_k(A) = \{(\operatorname{tr} X^*AX)/k : X \text{ is } n \times k, X^*X = I_k\}.$$

Since $W_n(A) = \{ \operatorname{tr} A/n \}$, we always assume that k < n to avoid trivial consideration. When k = 1, we have the classical numerical range $W_1(A)$, which is useful

Download English Version:

https://daneshyari.com/en/article/9498368

Download Persian Version:

https://daneshyari.com/article/9498368

Daneshyari.com