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Abstract

Motivated by state space realizations of transfer functions from system theory, a number
of operations on Schur complements are introduced and studied. These operations are equiva-
lence, extension, multiplication, inversion, and factorization. Together they form an algebraic
framework which is of independent interest, and also useful in solving problems in analysis.
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0. Introduction

Throughout this paper S will be a (2×2) operator (matrix) of the type

S =
[
A B

C D

]
: X�Y → X̂�Ŷ , (1)

where X, Y, X̂ and Ŷ are complex Banach spaces. Suppose A : X → X̂ is invertible.
Then, by (block) Gauss elimination,

S =
[

IX̂ 0
CA−1 I Ŷ

] [
A 0
0 D − CA−1B

] [
IX A−1B

0 IY

]
, (2)

where the first factor and the last factor in the right hand side are both invertible. The
second term in the diagonal of the factor in the middle of (2),

W1(S) = W1

([
A B

C D

])
= D − CA−1B : Y → Ŷ

is called the first Schur complement in S. Other names that are in vogue are Schur
complement of A in S and Schur complement of S relative to A; also instead of
W1(S), one finds the notation S/A (cf., [20, Chapter 1]).

Analogously, whenever D : Y → Ŷ is invertible,

S =
[
IX̂ BD−1

0 IŶ

] [
A− BD−1C 0

0 D

] [
IX 0

D−1C IY

]
, (3)

and the operator

W2(S) = W2

([
A B

C D

])
= A− BD−1C : X → X̂

is said to be the second Schur complement in S. Clearly, in this situation,

W2

([
A B

C D

])
= W1

([
D C

B A

])
, (4)

and hence every result for first Schur complements has a counterpart for second
Schur complements and vice versa.

Schur complements arise naturally in mathematical system theory. Indeed, when
in (1) the spaces X and X̂ coincide and the operator A is replaced with A− λ (short-
hand for A− λIX), one has

W1

([
A− λ B

C D

])
= D + C(λ− A)−1B. (5)

The right hand side of this expression is a state space realization of the transfer
function of the linear time invariant system

x′(t) = Ax(t)+ Bu(t), t � 0,
y(t) = Cx(t)+Du(t), t � 0,
x(0) = 0.

(6)
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