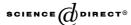


Available online at www.sciencedirect.com



LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 395 (2005) 163-174

www.elsevier.com/locate/laa

Siegel transformations for even characteristic

Erich W. Ellers ^{a,*}, Oliver Villa ^b

^aDepartment of Mathematics, University of Toronto, 100 St. George Street, Toronto, Ont., Canada M5S 3G3

^bDepartment of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland

Received 27 January 2004; accepted 3 August 2004

Submitted by R.A. Brualdi

Abstract

Let V be a vector space over a field K of even characteristic and |K| > 3. Suppose K is perfect and π is an element in the special orthogonal group SO(V) with dim $B(\pi) = 2d$. Then $\pi = \rho_1 \cdots \rho_{d-1} \kappa$, where ρ_j , $j = 1, \ldots, d-1$, are Siegel transformations and $\kappa \in SO(V)$ with dim $B(\kappa) = 2$. The length of π with respect to the Siegel transformations is d if π is unipotent or if dim $B(\pi)/\text{rad }B(\pi)\geqslant 4$; otherwise it is d+1. © 2004 Elsevier Inc. All rights reserved.

AMS classification: 15A23; 20H20; 51F25; 51N30

Keywords: Factorization; Siegel transformation; Orthogonal group; Quadratic form; Singular vector

1. Introduction

Let G be a group and let S be a set of generators for G. Let π be an element in G, then $\pi = s_1 \cdots s_k$, where all s_j , $j = 1, \ldots, k$, are elements in S. The *length* $\ell(\pi)$ of π with respect to S is the minimal k for which such a factorization exists. For certain groups G and certain generating systems S it is possible to determine $\ell(\pi)$ for each π in G.

^{*} Corresponding author. Tel.: +1 416 978 3462; fax: +1 416 978 4107. E-mail addresses: ellers@math.toronto.edu (E.W. Ellers), oliver.villa@ucd.ie (O. Villa).

Bachmann [1] coined the phrase *length problem* for the program described above. The length problem for the orthogonal groups over fields of characteristic not 2 was solved by Scherk [12]. Further, Dieudonné [3] solved the length problem for several other classical groups. For more references see e.g. Ellers [4,5].

If Q is a nondegenerate singular quadratic form on a vector space V over a field K, then the commutator subgroup $G = \Omega(V)$ of O(V) is generated by the set of Siegel transformations. Assuming that the field K of coefficients has characteristic not 2, Knüppel solved the length problem for $G = \Omega(V)$, where the generating set S is the set of Siegel transformations [10]. In the present paper, we assume that the characteristic of K is even, |K| > 3, and K is perfect. Under these conditions we solve the length problem for $\Omega(V)$ with respect to Siegel transformations.

In Section 3, we are laying the groundwork. Here we assume that V is nonsingular and that V contains singular vectors distinct from zero. We see that some of the properties established in [10] for orthogonal groups over fields K of characteristic not 2 are also valid when the characteristic of K is even.

In Section 4, we establish a lower bound for the Siegel length of an isometry. In Section 5, we assume that K is perfect, and we determine the Siegel length of an isometry π , Theorem 5.5. Here our approach differs entirely from that in [10]. Our tools include the factorization of an orthogonal transformation π into a product of two involutions [6,7] and also the factorization of π into a product $\pi = \mu \cdot \nu$, where μ is unipotent and the path of ν is nonsingular [8].

2. Notation

Let V be a vector space of dimension n over a field K where |K| > 2, equipped with a quadratic form Q (see $[2-\S16]$), defined by $Q(\alpha v) = \alpha^2 Q(v)$ and Q(v+w) = Q(v) + Q(w) + f(v,w) for some bilinear form f, where $\alpha \in K$ and $v,w \in V$. Two vectors $v,w \in V$ are called perpendicular, $v\perp w$, if f(v,w) = 0. A vector $v\in V$ is called isotropic if f(v,v) = 0 and singular if Q(v) = 0. Let W be a subspace of V. Then W is called totally isotropic if f(u,w) = 0 for all $u,w \in W$ and totally singular if Q(w) = 0 for all $w \in W$. A totally singular subspace is also totally isotropic, but the converse is not necessarily true. The subspaces rad $W = W \cap W^{\perp}$ and $SW = \{x \in \text{rad } W \mid Q(x) = 0\}$ are called the radical of W and the singular of W, respectively. The space W is said to be nonsingular if rad W = 0.

The orthogonal group on V, denoted O(V), is the set of isometries, i.e. of all transformations that preserve the value of Q. For $\pi \in O(V)$ we define $B(\pi) := V(\pi-1)$ and $F(\pi) := \ker(\pi-1)$. The subspaces $B(\pi)$ and $F(\pi)$ of V are called P and P and P and P are called P and P and P are called P are called P and P are called P and P are called P are called P are called P and P are called P and P are called P are called P are called P and P are called P and P are called P

We shall always assume that V is nonsingular and that there is at least one $v \in V \setminus \{0\}$ such that Q(v) = 0.

We shall state a number of facts (see e.g. [13]).

Download English Version:

https://daneshyari.com/en/article/9498609

Download Persian Version:

https://daneshyari.com/article/9498609

<u>Daneshyari.com</u>