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Abstract

Let

A =
(
H1 E∗
E H2

)
and Ã =

(
H1 O

O H2

)
be Hermitian matrices with eigenvalues λ1 � · · · � λk and λ̃1 � · · · � λ̃k , respectively. De-
note by ‖E‖ the spectral norm of the matrix E, and η the spectral gap between the spectra of
H1 and H2. It is shown that

|λi − λ̃i | � 2‖E‖2

η +
√
η2 + 4‖E‖2

,

which improves all the existing results. Similar bounds are obtained for singular values of
matrices under block perturbations.
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1. Introduction

Consider a partitioned Hermitian matrix

A =
( m n

m H1 E∗
n E H2

)
, (1.1)

where E∗ is E’s complex conjugate transpose. At various situations (typically when
E is small), one is interested in knowing the impact of removing E and E∗ on the
eigenvalues of A. More specifically, one would like to obtain bounds for the differ-
ences between that eigenvalues of A and those of its perturbed matrix

Ã =
( m n

m H1 O

n O H2

)
. (1.2)

Let λ(X) be the spectrum of the square matrix X, and let ‖Y‖ be the spectral norm
of a matrix Y , i.e., the largest singular value of Y . There are two kinds of bounds for
the eigenvalues λ1 � · · · � λm+n and λ̃1 � · · · � λ̃m+n of A and Ã, respectively:

(1) [1,7,8]

|λi − λ̃i | � ‖E‖. (1.3)

(2) [1–4,7,8] If the spectra of H1 and H2 are disjoint, then

|λi − λ̃i | � ‖E‖2/η, (1.4)

where

η
def= min

µ1∈λ(H1),µ2∈λ(H2)
|µ1 − µ2|,

and λ(Hi) is the spectrum of Hi .

The bounds of the first kind do not use information of the spectral distribution of
the H1 and H2, which will give (much) weaker bounds when η is not so small; while
the bounds of the second kind may blow up whenever H1 and H2 have a common
eigenvalue. Thus both kinds have their own drawbacks, and it would be advantageous
to have bounds that are always no bigger than ‖E‖, of O(‖E‖) as η → 0, and at the
same time behave like O(‖E‖2/η) for not so small η. To further motivate our study,
let us look at the following 2 × 2 example.

Example 1. Consider the 2 × 2 Hermitian matrix

A =
(
α ε

ε β

)
. (1.5)
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