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Abstract

Tsallis relative operator entropy is defined and then its properties are given. Shannon
inequality and its reverse one in Hilbert space operators derived by Furuta [Linear Algebra
Appl. 381 (2004) 219] are extended in terms of the parameter of the Tsallis relative operator
entropy. Moreover the generalized Tsallis relative operator entropy is introduced and then
several operator inequalities are derived.
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1. Introduction

Tsallis entropy

Sq(X) = −
∑
x

p(x)q lnq p(x)

was defined in [6] for the probability distribution p(x), where q-logarithm function

is defined by lnq(x) ≡ x1−q−1
1−q for any nonnegative real numbers x and q /= 1. It

is easily seen that Tsallis entropy is one parameter extension of Shannon entropy
S1(X) ≡ −∑x p(x) logp(x) and converges to it as q → 1. The study based on
Tsallis type entropies has been developed in mainly statistical physics [7]. In the
recent work [1], Tsallis type relative entropy in quantum system, defined by

Dq(ρ|σ) ≡ 1

1 − q
[1 − T r(ρqσ 1−q)] (1)

for two density operators ρ and σ (i.e., positive operators with unit trace) and 0 �
q < 1, was investigated.

On the other hand, the relative operator entropy was defined by Fujii and Kamei
[3]. Many important results in operator theory and information theory have been
published in the relation to Golden–Thompson inequality [2,5]. We are interested
in not only the properties of the Tsallis type relative entropy but also the prop-
erties before taking a trace, namely, Tsallis type relative operator entropy which
is a parametric extension of the relative operator entropy. In this paper, we define
the Tsallis relative operator entropy and then show some properties of Tsallis rel-
ative operator entropy. To this end, we slightly change the parameter q in Eq. (1)
to λ in our definition which will be appeared in the following section. Moreover,
in order to make our definition correspond to the definition of the relative oper-
ator entropy defined in [3], we change the sign of the original Tsallis relative
entropy.

2. Tsallis relative entropy

As mentioned above, we adopt the slightly modified definition of the Tsallis
relative entropy in the following.

Definition 1. Let a = {a1, a2, . . . , an} and b = {b1, b2, . . . , bn} be two probability
vectors satisfying aj , bj > 0. Then for 0 < λ � 1

Sλ(a|b) =
∑n

j=1 a
1−λ
j bλj − 1

λ
(2)

is called Tsallis relative entropy between a and b.
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